1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
|
<!doctype html>
<html class="html-note-page" lang="en">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>Rasterizing Triangles</title>
<meta name="dcterms.date" content="2022-04-03" />
<link rel="stylesheet" href="/assets/style.css">
<link rel="icon" type="image/x-icon" href="/assets/favicon.svg">
<link rel="alternate" type="application/atom+xml" title="Fryzek Concepts" href="/feed.xml">
</head>
<body>
<div class="header-bar">
<a href="/index.html">
<img src="/assets/favicon.svg" alt="frycon logo">
</a>
<div class="header-links">
<a href="/now.html" class="header-link">Now</a>
<a href="/about.html" class="header-link">About</a>
<a rel="me" href="https://mastodon.social/@hazematman" class="header-link">Social</a>
<a href="https://git.fryzekconcepts.com" class="header-link">Code</a>
</div>
</div>
<main>
<div class="page-title-header-container">
<h1 class="page-title-header">Rasterizing Triangles</h1>
<div class="page-info-container">
<div class="plant-status">
<img src="/assets/budding.svg">
<div class="plant-status-text">
<p>budding</p>
</div>
</div>
<div class="page-info-date-container">
<p class="page-info-date">Published: 2022-04-03</p>
<p class="page-info-date">Last Edited: 2023-02-20</p>
</div>
</div>
</div>
<div class="note-divider"></div>
<div class="main-container">
<div class="note-body">
<p>Lately I’ve been trying to implement a software renderer <a
href="https://www.cs.drexel.edu/~david/Classes/Papers/comp175-06-pineda.pdf">following
the algorithm described by Juan Pineda in “A Parallel Algorithm for
Polygon Rasterization”</a>. For those unfamiliar with the paper, it
describes an algorithm to rasterize triangles that has an extremely nice
quality, that you simply need to preform a few additions per pixel to
see if the next pixel is inside the triangle. It achieves this quality
by defining an edge function that has the following property:</p>
<pre><code>E(x+1,y) = E(x,y) + dY
E(x,y+1) = E(x,y) - dX</code></pre>
<p>This property is extremely nice for a rasterizer as additions are
quite cheap to preform and with this method we limit the amount of work
we have to do per pixel. One frustrating quality of this paper is that
it suggest that you can calculate more properties than just if a pixel
is inside the triangle with simple addition, but provides no explanation
for how to do that. In this blog I would like to explore how you
implement a Pineda style rasterizer that can calculate per pixel values
using simple addition.</p>
<figure>
<img
src="/assets/2022-04-03-rasterizing-triangles/Screenshot-from-2022-04-03-13-43-13.png"
alt="Triangle rasterized using code in this post" />
<figcaption aria-hidden="true">Triangle rasterized using code in this
post</figcaption>
</figure>
<p>In order to figure out how build this rasterizer <a
href="https://www.reddit.com/r/GraphicsProgramming/comments/tqxxmu/interpolating_values_in_a_pineda_style_rasterizer/">I
reached out to the internet</a> to help build some more intuition on how
the properties of this rasterizer. From this reddit post I gained more
intuition on how we can use the edge function values to linear
interpolate values on the triangle. Here is there relevant comment that
gave me all the information I needed</p>
<blockquote>
<p>Think about the edge function’s key property:</p>
<p><em>recognize that the formula given for E(x,y) is the same as the
formula for the magnitude of the cross product between the vector from
(X,Y) to (X+dX, Y+dY), and the vector from (X,Y) to (x,y). By the well
known property of cross products, the magnitude is zero if the vectors
are colinear, and changes sign as the vectors cross from one side to the
other.</em></p>
<p>The magnitude of the edge distance is the area of the parallelogram
formed by <code>(X,Y)->(X+dX,Y+dY)</code> and
<code>(X,Y)->(x,y)</code>. If you normalize by the parallelogram area
at the <em>other</em> point in the triangle you get a barycentric
coordinate that’s 0 along the <code>(X,Y)->(X+dX,Y+dY)</code> edge
and 1 at the other point. You can precompute each interpolated triangle
parameter normalized by this area at setup time, and in fact most
hardware computes per-pixel step values (pre 1/w correction) so that all
the parameters are computed as a simple addition as you walk along each
raster.</p>
<p>Note that when you’re implementing all of this it’s critical to keep
all the math in the integer domain (snapping coordinates to some integer
sub-pixel precision, I’d recommend at least 4 bits) and using a
tie-breaking function (typically top-left) for pixels exactly on the
edge to avoid pixel double-hits or gaps in adjacent triangles.</p>
<p>https://www.reddit.com/r/GraphicsProgramming/comments/tqxxmu/interpolating_values_in_a_pineda_style_rasterizer/i2krwxj/</p>
</blockquote>
<p>From this comment you can see that it is trivial to calculate to
calculate the barycentric coordinates of the triangle from the edge
function. You simply need to divide the the calculated edge function
value by the area of parallelogram. Now what is the area of triangle?
Well this is where some <a
href="https://www.scratchapixel.com/lessons/3d-basic-rendering/ray-tracing-rendering-a-triangle/barycentric-coordinates">more
research</a> online helped. If the edge function defines the area of a
parallelogram (2 times the area of the triangle) of
<code>(X,Y)->(X+dX,Y+dY)</code> and <code>(X,Y)->(x,y)</code>, and
we calculate three edge function values (one for each edge), then we
have 2 times the area of each of the sub triangles that are defined by
our point.</p>
<figure>
<img
src="https://www.scratchapixel.com/images/ray-triangle/barycentric.png?"
alt="Triangle barycentric coordinates from scratchpixel tutorial" />
<figcaption aria-hidden="true">Triangle barycentric coordinates from
scratchpixel tutorial</figcaption>
</figure>
<p>From this its trivial to see that we can calculate 2 times the area
of the triangle just by adding up all the individual areas of the sub
triangles (I used triangles here, but really we are adding the area of
sub parallelograms to get the area of the whole parallelogram that has 2
times the area of the triangle we are drawing), that is adding the value
of all the edge functions together. From this we can see to linear
interpolate any value on the triangle we can use the following
equation</p>
<pre><code>Value(x,y) = (e0*v0 + e1*v1 + e2*v2) / (e0 + e1 + e2)
Value(x,y) = (e0*v0 + e1*v1 + e2*v2) / area</code></pre>
<p>Where <code>e0, e1, e2</code> are the edge function values and
<code>v0, v1, v2</code> are the per vertex values we want to
interpolate.</p>
<p>This is great for the calculating the per vertex values, but we still
haven’t achieved the property of calculating the interpolate value per
pixel with simple addition. To do that we need to use the property of
the edge function I described above</p>
<pre><code>Value(x+1, y) = (E0(x+1, y)*v0 + E1(x+1, y)*v1 + E2(x+1, y)*v2) / area
Value(x+1, y) = ((e0+dY0)*v0 + (e1+dY1)*v1 + (e2+dY2)*v2) / area
Value(x+1, y) = (e0*v0 + dY0*v0 + e1*v1+dY1*v1 + e2*v2 + dY2*v2) / area
Value(x+1, y) = (e0*v0 + e1*v1 + e2*v2)/area + (dY0*v0 + dY1*v1 + dY2*v2)/area
Value(x+1, y) = Value(x,y) + (dY0*v0 + dY1*v1 + dY2*v2)/area</code></pre>
<p>From here we can see that if we work through all the math, we can
find this same property where the interpolated value is equal to the
previous interpolated value plus some number. Therefore if we
pre-compute this addition value, when we iterate over the pixels we only
need to add this pre-computed number to the interpolated value of the
previous pixel. We can repeat this process again to figure out the
equation of the pre-computed value for <code>Value(x, y+1)</code> but
I’ll save you the time and provide both equations below</p>
<pre><code>dYV = (dY0*v0 + dY1*v1 + dY2*v2)/area
dXV = (dX0*v0 + dX1*v1 + dX2*v2)/area
Value(x+1, y) = Value(x,y) + dYV
Value(x, y+1) = Value(x,y) - dXV</code></pre>
<p>Where <code>dY0, dY1, dY2</code> are the differences between y
coordinates as described in Pineda’s paper, <code>dX0, dX1, dX2</code>
are the differences in x coordinates as described in Pineda’s paper, and
the area is the pre-calculated sum of the edge functions</p>
<p>Now you should be able to build a Pineda style rasterizer that can
calculate per pixel interpolated values using simple addition, by
following pseudo code like this:</p>
<pre><code>func edge(x, y, xi, yi, dXi, dYi)
return (x - xi)*dYi - (y-yi)*dXi
func draw_triangle(x0, y0, x1, y1, x2, y2, v0, v1, v2):
dX0 = x0 - x2
dX1 = x1 - x0
dX2 = x2 - x1
dY0 = y0 - y2
dY1 = y1 - y0
dY2 = y2 - y1
start_x = 0
start_y = 0
e0 = edge(start_x, start_y, x0, y0, dX0, dY0)
e1 = edge(start_x, start_y, x1, y1, dX1, dY1)
e2 = edge(start_x, start_y, x2, y2, dX2, dY2)
area = e0 + e1 + e2
dYV = (dY0*v0 + dY1*v1 + dY2*v2) / area
dXV = (dX0*v0 + dX1*v1 + dX2*v2) / area
v = (e0*v0 + e1*v1 + e2*v2) / area
starting_e0 = e0
starting_e1 = e1
starting_e2 = e2
starting_v = v
for y = 0 to screen_height:
for x = 0 to screen_width:
if(e0 >= 0 && e1 >= 0 && e2 >= 0)
draw_pixel(x, y, v)
e0 = e0 + dY0
e1 = e1 + dY1
e2 = e2 + dY2
v = v + dYV
e0 = starting_e0 - dX0
e1 = starting_e1 - dX1
e2 = starting_e2 - dX2
v = starting_v - dXV
starting_e0 = e0
starting_e1 = e1
starting_e2 = e2
starting_v = v</code></pre>
<p>Now this pseudo code is not the most efficient as it will iterate
over the entire screen to draw one triangle, but it provides a starting
basis to show how to use these Pineda properties to calculate per vertex
values. One thing to note if you do implement this is, if you use fixed
point arithmetic, be careful to insure you have enough precision to
calculate all of these values with overflow or underflow. This was an
issue I ran into running out of precision when I did the divide by the
area.</p>
</div>
</div> </main>
</body>
</html>
|