/* * Copyright © 2008, 2010 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ /** * \file list.h * \brief Doubly-linked list abstract container type. * * Each doubly-linked list has a sentinel head and tail node. These nodes * contain no data. The head sentinel can be identified by its \c prev * pointer being \c NULL. The tail sentinel can be identified by its * \c next pointer being \c NULL. * * A list is empty if either the head sentinel's \c next pointer points to the * tail sentinel or the tail sentinel's \c prev poiner points to the head * sentinel. The head sentinel and tail sentinel nodes are allocated within the * list structure. * * Do note that this means that the list nodes will contain pointers into the * list structure itself and as a result you may not \c realloc() an \c * exec_list or any structure in which an \c exec_list is embedded. */ #ifndef LIST_CONTAINER_H #define LIST_CONTAINER_H #include #include "util/ralloc.h" struct exec_node { struct exec_node *next; struct exec_node *prev; }; static inline void exec_node_init(struct exec_node *n) { n->next = NULL; n->prev = NULL; } static inline const struct exec_node * exec_node_get_next_const(const struct exec_node *n) { return n->next; } static inline struct exec_node * exec_node_get_next(struct exec_node *n) { return n->next; } static inline const struct exec_node * exec_node_get_prev_const(const struct exec_node *n) { return n->prev; } static inline struct exec_node * exec_node_get_prev(struct exec_node *n) { return n->prev; } static inline void exec_node_remove(struct exec_node *n) { n->next->prev = n->prev; n->prev->next = n->next; n->next = NULL; n->prev = NULL; } static inline void exec_node_self_link(struct exec_node *n) { n->next = n; n->prev = n; } static inline void exec_node_insert_after(struct exec_node *n, struct exec_node *after) { after->next = n->next; after->prev = n; n->next->prev = after; n->next = after; } static inline void exec_node_insert_node_before(struct exec_node *n, struct exec_node *before) { before->next = n; before->prev = n->prev; n->prev->next = before; n->prev = before; } static inline bool exec_node_is_tail_sentinel(const struct exec_node *n) { return n->next == NULL; } static inline bool exec_node_is_head_sentinel(const struct exec_node *n) { return n->prev == NULL; } #ifdef __cplusplus /* This macro will not work correctly if `t' uses virtual inheritance. */ #define exec_list_offsetof(t, f, p) \ (((char *) &((t *) p)->f) - ((char *) p)) #else #define exec_list_offsetof(t, f, p) offsetof(t, f) #endif /** * Get a pointer to the structure containing an exec_node * * Given a pointer to an \c exec_node embedded in a structure, get a pointer to * the containing structure. * * \param type Base type of the structure containing the node * \param node Pointer to the \c exec_node * \param field Name of the field in \c type that is the embedded \c exec_node */ #define exec_node_data(type, node, field) \ ((type *) (((uintptr_t) node) - exec_list_offsetof(type, field, node))) struct exec_list { struct exec_node head_sentinel; struct exec_node tail_sentinel; }; static inline void exec_list_make_empty(struct exec_list *list) { list->head_sentinel.next = &list->tail_sentinel; list->head_sentinel.prev = NULL; list->tail_sentinel.next = NULL; list->tail_sentinel.prev = &list->head_sentinel; } static inline bool exec_list_is_empty(const struct exec_list *list) { /* There are three ways to test whether a list is empty or not. * * - Check to see if the head sentinel's \c next is the tail sentinel. * - Check to see if the tail sentinel's \c prev is the head sentinel. * - Check to see if the head is the sentinel node by test whether its * \c next pointer is \c NULL. * * The first two methods tend to generate better code on modern systems * because they save a pointer dereference. */ return list->head_sentinel.next == &list->tail_sentinel; } static inline bool exec_list_is_singular(const struct exec_list *list) { return !exec_list_is_empty(list) && list->head_sentinel.next->next == &list->tail_sentinel; } static inline const struct exec_node * exec_list_get_head_const(const struct exec_list *list) { return !exec_list_is_empty(list) ? list->head_sentinel.next : NULL; } static inline struct exec_node * exec_list_get_head(struct exec_list *list) { return !exec_list_is_empty(list) ? list->head_sentinel.next : NULL; } static inline struct exec_node * exec_list_get_head_raw(struct exec_list *list) { return list->head_sentinel.next; } static inline struct exec_node * exec_list_get_tail(struct exec_list *list) { return !exec_list_is_empty(list) ? list->tail_sentinel.prev : NULL; } static inline unsigned exec_list_length(const struct exec_list *list) { unsigned size = 0; struct exec_node *node; for (node = list->head_sentinel.next; node->next != NULL; node = node->next) { size++; } return size; } static inline void exec_list_push_head(struct exec_list *list, struct exec_node *n) { n->next = list->head_sentinel.next; n->prev = &list->head_sentinel; n->next->prev = n; list->head_sentinel.next = n; } static inline void exec_list_push_tail(struct exec_list *list, struct exec_node *n) { n->next = &list->tail_sentinel; n->prev = list->tail_sentinel.prev; n->prev->next = n; list->tail_sentinel.prev = n; } static inline struct exec_node * exec_list_pop_head(struct exec_list *list) { struct exec_node *const n = exec_list_get_head(list); if (n != NULL) exec_node_remove(n); return n; } static inline void exec_list_move_nodes_to(struct exec_list *list, struct exec_list *target) { if (exec_list_is_empty(list)) { exec_list_make_empty(target); } else { target->head_sentinel.next = list->head_sentinel.next; target->head_sentinel.prev = NULL; target->tail_sentinel.next = NULL; target->tail_sentinel.prev = list->tail_sentinel.prev; target->head_sentinel.next->prev = &target->head_sentinel; target->tail_sentinel.prev->next = &target->tail_sentinel; exec_list_make_empty(list); } } static inline void exec_list_append(struct exec_list *list, struct exec_list *source) { if (exec_list_is_empty(source)) return; /* Link the first node of the source with the last node of the target list. */ list->tail_sentinel.prev->next = source->head_sentinel.next; source->head_sentinel.next->prev = list->tail_sentinel.prev; /* Make the tail of the source list be the tail of the target list. */ list->tail_sentinel.prev = source->tail_sentinel.prev; list->tail_sentinel.prev->next = &list->tail_sentinel; /* Make the source list empty for good measure. */ exec_list_make_empty(source); } static inline void exec_node_insert_list_after(struct exec_node *n, struct exec_list *after) { if (exec_list_is_empty(after)) return; after->tail_sentinel.prev->next = n->next; after->head_sentinel.next->prev = n; n->next->prev = after->tail_sentinel.prev; n->next = after->head_sentinel.next; exec_list_make_empty(after); } static inline void exec_list_validate(const struct exec_list *list) { const struct exec_node *node; assert(list->head_sentinel.next->prev == &list->head_sentinel); assert(list->head_sentinel.prev == NULL); assert(list->tail_sentinel.next == NULL); assert(list->tail_sentinel.prev->next == &list->tail_sentinel); /* We could try to use one of the interators below for this but they all * either require C++ or assume the exec_node is embedded in a structure * which is not the case for this function. */ for (node = list->head_sentinel.next; node->next != NULL; node = node->next) { assert(node->next->prev == node); assert(node->prev->next == node); } } /** * Iterate through two lists at once. Stops at the end of the shorter list. * * This is safe against either current node being removed or replaced. */ #define foreach_two_lists(__node1, __list1, __node2, __list2) \ for (struct exec_node * __node1 = (__list1)->head_sentinel.next, \ * __node2 = (__list2)->head_sentinel.next, \ * __next1 = __node1->next, \ * __next2 = __node2->next \ ; __next1 != NULL && __next2 != NULL \ ; __node1 = __next1, \ __node2 = __next2, \ __next1 = __next1->next, \ __next2 = __next2->next) #define exec_node_data_forward(type, node, field) \ (!exec_node_is_tail_sentinel(node) ? exec_node_data(type, node, field) : NULL) #define exec_node_data_backward(type, node, field) \ (!exec_node_is_head_sentinel(node) ? exec_node_data(type, node, field) : NULL) #define exec_node_data_next(type, node, field) \ exec_node_data_forward(type, (node)->field.next, field) #define exec_node_data_prev(type, node, field) \ exec_node_data_backward(type, (node)->field.prev, field) #define exec_node_data_head(type, list, field) \ exec_node_data_forward(type, (list)->head_sentinel.next, field) #define exec_node_data_tail(type, list, field) \ exec_node_data_backward(type, (list)->tail_sentinel.prev, field) /** * Iterate over the list from head to tail. Removal is safe for all nodes except the current * iteration's. */ #define foreach_list_typed(type, node, field, list) \ for (type * node = exec_node_data_head(type, list, field); \ node != NULL; \ node = exec_node_data_next(type, node, field)) #define foreach_list_typed_from(type, node, field, list, __start) \ for (type * node = exec_node_data_forward(type, (__start), field); \ node != NULL; \ node = exec_node_data_next(type, node, field)) /** * Iterate over the list from tail to head. Removal is safe for all nodes except the current * iteration's. */ #define foreach_list_typed_reverse(type, node, field, list) \ for (type * node = exec_node_data_tail(type, list, field); \ node != NULL; \ node = exec_node_data_prev(type, node, field)) /** * Iterate over the list from head to tail. Removal is safe for all nodes except the next * iteration's. If the next iteration's node is removed and not inserted again, this loop exits. */ #define foreach_list_typed_safe(type, node, field, list) \ for (type * node = exec_node_data_head(type, list, field), \ * __next = node ? \ exec_node_data_next(type, node, field) : NULL; \ node != NULL; \ node = __next, __next = (__next && __next->field.next) ? \ exec_node_data_next(type, __next, field) : NULL) /** * Iterate over the list from tail to head. Removal is safe for all nodes except the next * iteration's. If the next iteration's node is removed and not inserted again, this loop exits. */ #define foreach_list_typed_reverse_safe(type, node, field, list) \ for (type * node = exec_node_data_tail(type, list, field), \ * __prev = node ? \ exec_node_data_prev(type, node, field) : NULL; \ node != NULL; \ node = __prev, __prev = (__prev && __prev->field.prev) ? \ exec_node_data_prev(type, __prev, field) : NULL) #endif /* LIST_CONTAINER_H */