1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
|
#
# Copyright (C) 2018 Red Hat
# Copyright (C) 2014 Intel Corporation
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice (including the next
# paragraph) shall be included in all copies or substantial portions of the
# Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
# IN THE SOFTWARE.
#
# This file defines all the available intrinsics in one place.
#
# The Intrinsic class corresponds one-to-one with nir_intrinsic_info
# structure.
src0 = ('src', 0)
src1 = ('src', 1)
src2 = ('src', 2)
src3 = ('src', 3)
src4 = ('src', 4)
class Index(object):
def __init__(self, c_data_type, name):
self.c_data_type = c_data_type
self.name = name
class Intrinsic(object):
"""Class that represents all the information about an intrinsic opcode.
NOTE: this must be kept in sync with nir_intrinsic_info.
"""
def __init__(self, name, src_components, dest_components,
indices, flags, sysval, bit_sizes):
"""Parameters:
- name: the intrinsic name
- src_components: list of the number of components per src, 0 means
vectorized instruction with number of components given in the
num_components field in nir_intrinsic_instr.
- dest_components: number of destination components, -1 means no
dest, 0 means number of components given in num_components field
in nir_intrinsic_instr.
- indices: list of constant indices
- flags: list of semantic flags
- sysval: is this a system-value intrinsic
- bit_sizes: allowed dest bit_sizes or the source it must match
"""
assert isinstance(name, str)
assert isinstance(src_components, list)
if src_components:
assert isinstance(src_components[0], int)
assert isinstance(dest_components, int)
assert isinstance(indices, list)
if indices:
assert isinstance(indices[0], Index)
assert isinstance(flags, list)
if flags:
assert isinstance(flags[0], str)
assert isinstance(sysval, bool)
if isinstance(bit_sizes, list):
assert not bit_sizes or isinstance(bit_sizes[0], int)
else:
assert isinstance(bit_sizes, tuple)
assert bit_sizes[0] == 'src'
assert isinstance(bit_sizes[1], int)
self.name = name
self.num_srcs = len(src_components)
self.src_components = src_components
self.has_dest = (dest_components >= 0)
self.dest_components = dest_components
self.num_indices = len(indices)
self.indices = indices
self.flags = flags
self.sysval = sysval
self.bit_sizes = bit_sizes if isinstance(bit_sizes, list) else []
self.bit_size_src = bit_sizes[1] if isinstance(bit_sizes, tuple) else -1
#
# Possible flags:
#
CAN_ELIMINATE = "NIR_INTRINSIC_CAN_ELIMINATE"
CAN_REORDER = "NIR_INTRINSIC_CAN_REORDER"
SUBGROUP = "NIR_INTRINSIC_SUBGROUP"
QUADGROUP = "NIR_INTRINSIC_QUADGROUP | " + SUBGROUP
SUBGROUP_FLAGS = [CAN_ELIMINATE, SUBGROUP]
QUADGROUP_FLAGS = [CAN_ELIMINATE, QUADGROUP]
INTR_INDICES = []
INTR_OPCODES = {}
def index(c_data_type, name):
idx = Index(c_data_type, name)
INTR_INDICES.append(idx)
globals()[name.upper()] = idx
# Defines a new NIR intrinsic. By default, the intrinsic will have no sources
# and no destination.
#
# You can set dest_comp=n to enable a destination for the intrinsic, in which
# case it will have that many components, or =0 for "as many components as the
# NIR destination value."
#
# Set src_comp=n to enable sources for the intruction. It can be an array of
# component counts, or (for convenience) a scalar component count if there's
# only one source. If a component count is 0, it will be as many components as
# the intrinsic has based on the dest_comp.
def intrinsic(name, src_comp=[], dest_comp=-1, indices=[],
flags=[], sysval=False, bit_sizes=[]):
assert name not in INTR_OPCODES
INTR_OPCODES[name] = Intrinsic(name, src_comp, dest_comp,
indices, flags, sysval, bit_sizes)
#
# Possible indices:
#
# Generally instructions that take a offset src argument, can encode
# a constant 'base' value which is added to the offset.
index("int", "base")
# For store instructions, a writemask for the store.
index("unsigned", "write_mask")
# The stream-id for GS emit_vertex/end_primitive intrinsics.
index("unsigned", "stream_id")
# The clip-plane id for load_user_clip_plane intrinsic.
index("unsigned", "ucp_id")
# The offset to the start of the NIR_INTRINSIC_RANGE. This is an alternative
# to NIR_INTRINSIC_BASE for describing the valid range in intrinsics that don't
# have the implicit addition of a base to the offset.
#
# If the [range_base, range] is [0, ~0], then we don't know the possible
# range of the access.
index("unsigned", "range_base")
# The amount of data, starting from BASE or RANGE_BASE, that this
# instruction may access. This is used to provide bounds if the offset is
# not constant.
index("unsigned", "range")
# The Vulkan descriptor set for vulkan_resource_index intrinsic.
index("unsigned", "desc_set")
# The Vulkan descriptor set binding for vulkan_resource_index intrinsic.
index("unsigned", "binding")
# Component offset
index("unsigned", "component")
# Column index for matrix system values
index("unsigned", "column")
# Interpolation mode (only meaningful for FS inputs)
index("unsigned", "interp_mode")
# A binary nir_op to use when performing a reduction or scan operation
index("unsigned", "reduction_op")
# Cluster size for reduction operations
index("unsigned", "cluster_size")
# Parameter index for a load_param intrinsic
index("unsigned", "param_idx")
# Image dimensionality for image intrinsics
index("enum glsl_sampler_dim", "image_dim")
# Non-zero if we are accessing an array image
index("bool", "image_array")
# Image format for image intrinsics
# Vertex buffer format for load_typed_buffer_amd
index("enum pipe_format", "format")
# Access qualifiers for image and memory access intrinsics. ACCESS_RESTRICT is
# not set at the intrinsic if the NIR was created from SPIR-V.
index("enum gl_access_qualifier", "access")
# call index for split raytracing shaders
index("unsigned", "call_idx")
# The stack size increment/decrement for split raytracing shaders
index("unsigned", "stack_size")
# Alignment for offsets and addresses
#
# These two parameters, specify an alignment in terms of a multiplier and
# an offset. The multiplier is always a power of two. The offset or
# address parameter X of the intrinsic is guaranteed to satisfy the
# following:
#
# (X - align_offset) % align_mul == 0
#
# For constant offset values, align_mul will be NIR_ALIGN_MUL_MAX and the
# align_offset will be modulo that.
index("unsigned", "align_mul")
index("unsigned", "align_offset")
# For load/store intrinsics that take an offset, the amount the offset is
# shifted left to calculate the final byte offset:
#
# offset = (offset_src + base) << offset_shift
#
# It is unspecified how overflows due to offset_shift are handled: they may
# either be treated as out-of-bounds, or wrap around and generate an in-bounds
# offset. NIR passes may implement either behavior and may not be consistent
# about it.
#
# This is useful for backends that have memory operations that use offset units
# other than bytes (i.e., where the shift is implicit).
index("unsigned", "offset_shift")
# The Vulkan descriptor type for a vulkan_resource_[re]index intrinsic.
index("unsigned", "desc_type")
# The nir_alu_type of input data to a store or conversion
index("nir_alu_type", "src_type")
# The nir_alu_type of the data output from a load or conversion
index("nir_alu_type", "dest_type")
# Source and destination data types for dpas_intel. Needed here to
# represent types that won't have a nir_alu_type.
index("enum glsl_base_type", "src_base_type")
index("enum glsl_base_type", "src_base_type2")
index("enum glsl_base_type", "dest_base_type")
# The swizzle mask for quad_swizzle_amd & masked_swizzle_amd
index("unsigned", "swizzle_mask")
# Allow FI=1 for quad_swizzle_amd & masked_swizzle_amd
index("bool", "fetch_inactive")
# Offsets for load_shared2_amd/store_shared2_amd
index("uint8_t", "offset0")
index("uint8_t", "offset1")
# If true, both offsets have an additional stride of 64 dwords (ie. they are multiplied by 256 bytes
# in hardware, instead of 4).
index("bool", "st64")
# When set, range analysis will use it for nir_unsigned_upper_bound
index("unsigned", "arg_upper_bound_u32_amd")
# Separate source/dest access flags for copies
index("enum gl_access_qualifier", "dst_access")
index("enum gl_access_qualifier", "src_access")
# Driver location of attribute
index("unsigned", "driver_location")
# Ordering and visibility of a memory operation
index("nir_memory_semantics", "memory_semantics")
# Modes affected by a memory operation
index("nir_variable_mode", "memory_modes")
# Scope of a memory operation
index("mesa_scope", "memory_scope")
# Scope of a control barrier
index("mesa_scope", "execution_scope")
# Semantics of an IO instruction
index("struct nir_io_semantics", "io_semantics")
# Transform feedback info
index("struct nir_io_xfb", "io_xfb")
index("struct nir_io_xfb", "io_xfb2")
# Ray query values accessible from the RayQueryKHR object
index("nir_ray_query_value", "ray_query_value")
# Select between committed and candidate ray queriy intersections
index("bool", "committed")
# Rounding mode for conversions
index("nir_rounding_mode", "rounding_mode")
# Whether or not to saturate in conversions
index("unsigned", "saturate")
# Whether or not trace_ray_intel is synchronous
index("bool", "synchronous")
# Value ID to identify SSA value loaded/stored on the stack
index("unsigned", "value_id")
# Whether to sign-extend offsets in address arithmatic (else zero extend)
index("bool", "sign_extend")
# Instruction specific flags
index("unsigned", "flags")
# Logical operation of an atomic intrinsic
index("nir_atomic_op", "atomic_op")
# Block identifier to push promotion
index("unsigned", "resource_block_intel")
# Various flags describing the resource access
index("nir_resource_data_intel", "resource_access_intel")
# Register metadata
# number of vector components
index("unsigned", "num_components")
# size of array (0 for no array)
index("unsigned", "num_array_elems")
# The bit-size of each channel; must be one of 1, 8, 16, 32, or 64
index("unsigned", "bit_size")
# True if this register may have different values in different SIMD invocations
# of the shader.
index("bool", "divergent")
# On a register load, floating-point absolute value/negate loaded value.
index("bool", "legacy_fabs")
index("bool", "legacy_fneg")
# On a register store, floating-point saturate the stored value.
index("bool", "legacy_fsat")
# For Cooperative Matrix intrinsics.
index("struct glsl_cmat_description", "cmat_desc")
index("enum glsl_matrix_layout", "matrix_layout")
index("nir_cmat_signed", "cmat_signed_mask")
index("nir_op", "alu_op")
index("unsigned", "neg_lo_amd")
index("unsigned", "neg_hi_amd")
# For Intel DPAS instrinsic.
index("unsigned", "systolic_depth")
index("unsigned", "repeat_count")
# For Intel convert_cmat_intel intrinsic.
index("struct glsl_cmat_description", "dst_cmat_desc")
index("struct glsl_cmat_description", "src_cmat_desc")
# For an AGX tilebuffer intrinsics, whether the coordinates are implicit or
# explicit. Implicit coordinates are used in fragment shaders, explicit
# coordinates in compute.
index("bool", "explicit_coord")
index("bool", "src_is_reg")
index("bool", "dst_is_reg")
# The index of the format string used by a printf. (u_printf_info element of the shader)
index("unsigned", "fmt_idx")
# for NV coop matrix - num of matrix in load 1/2/4
index("unsigned", "num_matrices")
# Register class for load/store_preamble
index("nir_preamble_class", "preamble_class")
intrinsic("nop", flags=[CAN_ELIMINATE])
# Uses a value and cannot be eliminated.
#
# This is helpful when writing unit tests
intrinsic("use", src_comp=[0], flags=[])
intrinsic("convert_alu_types", dest_comp=0, src_comp=[0],
indices=[SRC_TYPE, DEST_TYPE, ROUNDING_MODE, SATURATE],
flags=[CAN_ELIMINATE, CAN_REORDER])
intrinsic("load_param", dest_comp=0, indices=[PARAM_IDX], flags=[CAN_ELIMINATE])
# Store a scalar value to be used as a return value. Usually store_deref is used
# for this, but vtn_bindgen needs to lower derefs.
intrinsic("bindgen_return", src_comp=[0])
intrinsic("load_deref", dest_comp=0, src_comp=[-1],
indices=[ACCESS], flags=[CAN_ELIMINATE])
intrinsic("store_deref", src_comp=[-1, 0], indices=[WRITE_MASK, ACCESS])
intrinsic("copy_deref", src_comp=[-1, -1], indices=[DST_ACCESS, SRC_ACCESS])
intrinsic("memcpy_deref", src_comp=[-1, -1, 1], indices=[DST_ACCESS, SRC_ACCESS])
# Sources: [src, reg_dst], Definition: dst
intrinsic("parallel_copy", dest_comp=0, src_comp=[-1, -1], indices=[SRC_IS_REG, DST_IS_REG])
# Returns an opaque handle representing a register indexed by BASE. The
# logically def-use list of a register is given by the use list of this handle.
# The shape of the underlying register is given by the indices, the handle
# itself is always a 32-bit scalar.
intrinsic("decl_reg", dest_comp=1,
indices=[NUM_COMPONENTS, NUM_ARRAY_ELEMS, BIT_SIZE, DIVERGENT],
flags=[CAN_ELIMINATE])
# Load a register given as the source directly with base offset BASE.
intrinsic("load_reg", dest_comp=0, src_comp=[1],
indices=[BASE, LEGACY_FABS, LEGACY_FNEG], flags=[CAN_ELIMINATE])
# Load a register given as first source indirectly with base offset BASE and
# indirect offset as second source.
intrinsic("load_reg_indirect", dest_comp=0, src_comp=[1, 1],
indices=[BASE, LEGACY_FABS, LEGACY_FNEG], flags=[CAN_ELIMINATE])
# Store the value in the first source to a register given as the second source
# directly with base offset BASE.
intrinsic("store_reg", src_comp=[0, 1],
indices=[BASE, WRITE_MASK, LEGACY_FSAT])
# Store the value in the first source to a register given as the second
# source indirectly with base offset BASE and indirect offset as third source.
intrinsic("store_reg_indirect", src_comp=[0, 1, 1],
indices=[BASE, WRITE_MASK, LEGACY_FSAT])
# Interpolation of input. The interp_deref_at* intrinsics are similar to the
# load_var intrinsic acting on a shader input except that they interpolate the
# input differently. The at_sample, at_offset and at_vertex intrinsics take an
# additional source that is an integer sample id, a vec2 position offset, or a
# vertex ID respectively.
intrinsic("interp_deref_at_centroid", dest_comp=0, src_comp=[1],
flags=[ CAN_ELIMINATE, CAN_REORDER])
intrinsic("interp_deref_at_sample", src_comp=[1, 1], dest_comp=0,
flags=[CAN_ELIMINATE, CAN_REORDER])
intrinsic("interp_deref_at_offset", src_comp=[1, 2], dest_comp=0,
flags=[CAN_ELIMINATE, CAN_REORDER])
intrinsic("interp_deref_at_vertex", src_comp=[1, 1], dest_comp=0,
flags=[CAN_ELIMINATE, CAN_REORDER])
# Gets the length of an unsized array at the end of a buffer
intrinsic("deref_buffer_array_length", src_comp=[-1], dest_comp=1,
indices=[ACCESS], flags=[CAN_ELIMINATE, CAN_REORDER])
# Gets the length of an unsized array
intrinsic("deref_implicit_array_length", src_comp=[-1], dest_comp=1,
flags=[CAN_ELIMINATE, CAN_REORDER])
# Ask the driver for the size of a given SSBO. It takes the buffer index
# as source.
intrinsic("get_ssbo_size", src_comp=[-1], dest_comp=1, bit_sizes=[32],
indices=[ACCESS], flags=[CAN_ELIMINATE, CAN_REORDER])
intrinsic("get_ubo_size", src_comp=[-1], dest_comp=1,
flags=[CAN_ELIMINATE, CAN_REORDER])
intrinsic("ssbo_descriptor_amd", src_comp=[-1], dest_comp=4, bit_sizes=[32],
indices=[ACCESS], flags=[CAN_ELIMINATE, CAN_REORDER])
# Intrinsics which provide a run-time mode-check. Unlike the compile-time
# mode checks, a pointer can only have exactly one mode at runtime.
intrinsic("deref_mode_is", src_comp=[-1], dest_comp=1,
indices=[MEMORY_MODES], flags=[CAN_ELIMINATE, CAN_REORDER])
intrinsic("addr_mode_is", src_comp=[-1], dest_comp=1,
indices=[MEMORY_MODES], flags=[CAN_ELIMINATE, CAN_REORDER])
intrinsic("is_sparse_texels_resident", dest_comp=1, src_comp=[1], bit_sizes=[1,32],
flags=[CAN_ELIMINATE, CAN_REORDER])
# result code is resident only if both inputs are resident
intrinsic("sparse_residency_code_and", dest_comp=1, src_comp=[1, 1], bit_sizes=[32],
flags=[CAN_ELIMINATE, CAN_REORDER])
# Unlike is_sparse_texels_resident, this intrinsic is required to consume
# the destination of the nir_tex_instr or sparse_load intrinsic directly.
# As such it is allowed to ignore the .e component where we usually store
# sparse information.
intrinsic("is_sparse_resident_zink", dest_comp=1, src_comp=[0], bit_sizes=[1],
flags=[CAN_ELIMINATE, CAN_REORDER])
# The following intrinsics calculate screen-space partial derivatives. These are
# not CAN_REORDER as they cannot be moved across discards.
for suffix in ["", "_fine", "_coarse"]:
for axis in ["x", "y"]:
intrinsic(f"dd{axis}{suffix}", dest_comp=0, src_comp=[0],
bit_sizes=[16, 32], flags=[CAN_ELIMINATE, QUADGROUP])
# a barrier is an intrinsic with no inputs/outputs but which can't be moved
# around/optimized in general
def barrier(name):
intrinsic(name)
# Demote fragment shader invocation to a helper invocation. Any stores to
# memory after this instruction are suppressed and the fragment does not write
# outputs to the framebuffer. Unlike discard, demote needs to ensure that
# derivatives will still work for invocations that were not demoted.
#
# As specified by SPV_EXT_demote_to_helper_invocation.
barrier("demote")
intrinsic("is_helper_invocation", dest_comp=1, flags=[CAN_ELIMINATE])
# SpvOpTerminateInvocation from SPIR-V. Essentially a discard "for real".
barrier("terminate")
# NonSemantic.DebugBreak from SPIR-V. Essentially used to emit breakpoints in
# shaders.
barrier("debug_break")
# Control/Memory barrier with explicit scope. Follows the semantics of SPIR-V
# OpMemoryBarrier and OpControlBarrier, used to implement Vulkan Memory Model.
# Storage that the barrier applies is represented using NIR variable modes.
# For an OpMemoryBarrier, set EXECUTION_SCOPE to SCOPE_NONE.
intrinsic("barrier",
indices=[EXECUTION_SCOPE, MEMORY_SCOPE, MEMORY_SEMANTICS, MEMORY_MODES])
# Shader clock intrinsic with semantics analogous to the clock2x32ARB()
# GLSL intrinsic.
# The latter can be used as code motion barrier, which is currently not
# feasible with NIR.
intrinsic("shader_clock", dest_comp=2, bit_sizes=[32], flags=[CAN_ELIMINATE],
indices=[MEMORY_SCOPE])
# Shader ballot intrinsics with semantics analogous to the
#
# ballotARB()
# readInvocationARB()
# readFirstInvocationARB()
#
# GLSL functions from ARB_shader_ballot.
intrinsic("ballot", src_comp=[1], dest_comp=0, flags=SUBGROUP_FLAGS)
intrinsic("read_invocation", src_comp=[0, 1], dest_comp=0, bit_sizes=src0, flags=SUBGROUP_FLAGS)
intrinsic("read_first_invocation", src_comp=[0], dest_comp=0, bit_sizes=src0, flags=SUBGROUP_FLAGS)
# Same as ballot, but inactive invocations contribute undefined bits.
intrinsic("ballot_relaxed", src_comp=[1], dest_comp=0, flags=SUBGROUP_FLAGS)
# Allows the backend compiler to move this value to an uniform register.
# Result is undefined if src is not uniform.
# Unlike read_first_invocation, it may be replaced by a divergent move or CSE'd.
intrinsic("as_uniform", src_comp=[0], dest_comp=0, bit_sizes=src0, flags=[CAN_ELIMINATE])
# Returns the value of the first source for the lane where the second source is
# true. The second source must be true for exactly one lane.
intrinsic("read_invocation_cond_ir3", src_comp=[0, 1], dest_comp=0, flags=SUBGROUP_FLAGS)
# Like read_first_invocation but using the getlast instruction instead of
# getone. More specifically, this will read the value from the last active
# invocation of the first cluster of 8 invocations with an active invocation.
intrinsic("read_getlast_ir3", src_comp=[0], dest_comp=0, bit_sizes=src0, flags=SUBGROUP_FLAGS)
# Additional SPIR-V ballot intrinsics
#
# These correspond to the SPIR-V opcodes
#
# OpGroupNonUniformElect
# OpSubgroupFirstInvocationKHR
# OpGroupNonUniformInverseBallot
intrinsic("elect", dest_comp=1, flags=SUBGROUP_FLAGS)
intrinsic("first_invocation", dest_comp=1, bit_sizes=[32], flags=SUBGROUP_FLAGS)
intrinsic("last_invocation", dest_comp=1, bit_sizes=[32], flags=SUBGROUP_FLAGS)
intrinsic("inverse_ballot", src_comp=[0], dest_comp=1, bit_sizes=[1], flags=[CAN_ELIMINATE, CAN_REORDER])
barrier("begin_invocation_interlock")
barrier("end_invocation_interlock")
# A conditional demote/terminate, with a single boolean source.
intrinsic("demote_if", src_comp=[1])
intrinsic("terminate_if", src_comp=[1])
# ARB_shader_group_vote intrinsics
intrinsic("vote_any", src_comp=[1], dest_comp=1, flags=SUBGROUP_FLAGS)
intrinsic("vote_all", src_comp=[1], dest_comp=1, flags=SUBGROUP_FLAGS)
intrinsic("vote_feq", src_comp=[0], dest_comp=1, flags=SUBGROUP_FLAGS)
intrinsic("vote_ieq", src_comp=[0], dest_comp=1, flags=SUBGROUP_FLAGS)
# Ballot ALU operations from SPIR-V.
#
# These operations work like their ALU counterparts except that the operate
# on a uvec4 which is treated as a 128bit integer. Also, they are, in
# general, free to ignore any bits which are above the subgroup size.
intrinsic("ballot_bitfield_extract", src_comp=[4, 1], dest_comp=1, bit_sizes=[1], flags=[CAN_REORDER, CAN_ELIMINATE])
intrinsic("ballot_bit_count_reduce", src_comp=[4], dest_comp=1, bit_sizes=[32], flags=[CAN_REORDER, CAN_ELIMINATE])
intrinsic("ballot_bit_count_inclusive", src_comp=[4], dest_comp=1, bit_sizes=[32], flags=[CAN_REORDER, CAN_ELIMINATE])
intrinsic("ballot_bit_count_exclusive", src_comp=[4], dest_comp=1, bit_sizes=[32], flags=[CAN_REORDER, CAN_ELIMINATE])
intrinsic("ballot_find_lsb", src_comp=[4], dest_comp=1, bit_sizes=[32], flags=[CAN_REORDER, CAN_ELIMINATE])
intrinsic("ballot_find_msb", src_comp=[4], dest_comp=1, bit_sizes=[32], flags=[CAN_REORDER, CAN_ELIMINATE])
# Shuffle operations from SPIR-V.
intrinsic("shuffle", src_comp=[0, 1], dest_comp=0, bit_sizes=src0, flags=SUBGROUP_FLAGS)
intrinsic("shuffle_xor", src_comp=[0, 1], dest_comp=0, bit_sizes=src0, flags=SUBGROUP_FLAGS)
intrinsic("shuffle_up", src_comp=[0, 1], dest_comp=0, bit_sizes=src0, flags=SUBGROUP_FLAGS)
intrinsic("shuffle_down", src_comp=[0, 1], dest_comp=0, bit_sizes=src0, flags=SUBGROUP_FLAGS)
# Quad operations from SPIR-V.
intrinsic("quad_broadcast", src_comp=[0, 1], dest_comp=0, bit_sizes=src0, flags=QUADGROUP_FLAGS)
intrinsic("quad_swap_horizontal", src_comp=[0], dest_comp=0, bit_sizes=src0, flags=QUADGROUP_FLAGS)
intrinsic("quad_swap_vertical", src_comp=[0], dest_comp=0, bit_sizes=src0, flags=QUADGROUP_FLAGS)
intrinsic("quad_swap_diagonal", src_comp=[0], dest_comp=0, bit_sizes=src0, flags=QUADGROUP_FLAGS)
# Similar to vote_any and vote_all, but per-quad instead of per-wavefront.
# Equivalent to subgroupOr(val, 4) and subgroupAnd(val, 4) assuming val is
# boolean.
intrinsic("quad_vote_any", src_comp=[1], dest_comp=1, flags=QUADGROUP_FLAGS)
intrinsic("quad_vote_all", src_comp=[1], dest_comp=1, flags=QUADGROUP_FLAGS)
# Rotate operation from SPIR-V: SpvOpGroupNonUniformRotateKHR.
intrinsic("rotate", src_comp=[0, 1], dest_comp=0, bit_sizes=src0,
indices=[CLUSTER_SIZE], flags=SUBGROUP_FLAGS);
intrinsic("reduce", src_comp=[0], dest_comp=0, bit_sizes=src0,
indices=[REDUCTION_OP, CLUSTER_SIZE], flags=SUBGROUP_FLAGS)
intrinsic("inclusive_scan", src_comp=[0], dest_comp=0, bit_sizes=src0,
indices=[REDUCTION_OP], flags=SUBGROUP_FLAGS)
intrinsic("exclusive_scan", src_comp=[0], dest_comp=0, bit_sizes=src0,
indices=[REDUCTION_OP], flags=SUBGROUP_FLAGS)
# AMD shader ballot operations
intrinsic("quad_swizzle_amd", src_comp=[0], dest_comp=0, bit_sizes=src0,
indices=[SWIZZLE_MASK, FETCH_INACTIVE],
flags=QUADGROUP_FLAGS)
intrinsic("masked_swizzle_amd", src_comp=[0], dest_comp=0, bit_sizes=src0,
indices=[SWIZZLE_MASK, FETCH_INACTIVE],
flags=SUBGROUP_FLAGS)
intrinsic("write_invocation_amd", src_comp=[0, 0, 1], dest_comp=0, bit_sizes=src0,
flags=[CAN_ELIMINATE])
# src = [ mask, addition ]
intrinsic("mbcnt_amd", src_comp=[1, 1], dest_comp=1, bit_sizes=[32], flags=[CAN_REORDER, CAN_ELIMINATE])
# Compiled to v_permlane16_b32. src = [ value, lanesel_lo, lanesel_hi ]
intrinsic("lane_permute_16_amd", src_comp=[1, 1, 1], dest_comp=1, bit_sizes=[32], flags=[CAN_ELIMINATE])
# subgroup shuffle up/down with cluster size 16.
# base in [-15, -1]: DPP_ROW_SR
# base in [ 1, 15]: DPP_ROW_SL, otherwise invalid.
# Returns zero for invocations that try to read out of bounds
intrinsic("dpp16_shift_amd", src_comp=[0], dest_comp=0, bit_sizes=src0, indices=[BASE], flags=[CAN_ELIMINATE])
# Basic Geometry Shader intrinsics.
#
# emit_vertex implements GLSL's EmitStreamVertex() built-in. It takes a single
# index, which is the stream ID to write to.
#
# end_primitive implements GLSL's EndPrimitive() built-in.
intrinsic("emit_vertex", indices=[STREAM_ID])
intrinsic("end_primitive", indices=[STREAM_ID])
# Geometry Shader intrinsics with a vertex count.
#
# Alternatively, drivers may implement these intrinsics, and use
# nir_lower_gs_intrinsics() to convert from the basic intrinsics.
#
# These contain two additional unsigned integer sources:
# 1. The total number of vertices emitted so far.
# 2. The number of vertices emitted for the current primitive
# so far if we're counting, otherwise undef.
intrinsic("emit_vertex_with_counter", src_comp=[1, 1], indices=[STREAM_ID])
intrinsic("end_primitive_with_counter", src_comp=[1, 1], indices=[STREAM_ID])
# Contains the final total vertex, primitive, and decomposed primitives counts
# in the current GS thread.
intrinsic("set_vertex_and_primitive_count", src_comp=[1, 1, 1], indices=[STREAM_ID])
# Launches mesh shader workgroups from a task shader, with explicit task_payload.
# Rules:
# - This is a terminating instruction.
# - May only occur in workgroup-uniform control flow.
# - Dispatch sizes may be divergent (in which case the values
# from the first invocation are used).
# Meaning of indices:
# - BASE: address of the task_payload variable used.
# - RANGE: size of the task_payload variable used.
#
# src[] = {vec(x, y, z)}
intrinsic("launch_mesh_workgroups", src_comp=[3], indices=[BASE, RANGE])
# Launches mesh shader workgroups from a task shader, with task_payload variable deref.
# Same rules as launch_mesh_workgroups apply here as well.
# src[] = {vec(x, y, z), payload pointer}
intrinsic("launch_mesh_workgroups_with_payload_deref", src_comp=[3, -1], indices=[])
# Trace a ray through an acceleration structure
#
# This instruction has a lot of parameters:
# 0. Acceleration Structure
# 1. Ray Flags
# 2. Cull Mask
# 3. SBT Offset
# 4. SBT Stride
# 5. Miss shader index
# 6. Ray Origin
# 7. Ray Tmin
# 8. Ray Direction
# 9. Ray Tmax
# 10. Payload
intrinsic("trace_ray", src_comp=[-1, 1, 1, 1, 1, 1, 3, 1, 3, 1, -1])
# src[] = { hit_t, hit_kind }
intrinsic("report_ray_intersection", src_comp=[1, 1], dest_comp=1)
intrinsic("ignore_ray_intersection")
intrinsic("accept_ray_intersection") # Not in SPIR-V; useful for lowering
intrinsic("terminate_ray")
# src[] = { sbt_index, payload }
intrinsic("execute_callable", src_comp=[1, -1])
# Initialize a ray query
#
# 0. Ray Query
# 1. Acceleration Structure
# 2. Ray Flags
# 3. Cull Mask
# 4. Ray Origin
# 5. Ray Tmin
# 6. Ray Direction
# 7. Ray Tmax
intrinsic("rq_initialize", src_comp=[-1, -1, 1, 1, 3, 1, 3, 1])
# src[] = { query }
intrinsic("rq_terminate", src_comp=[-1])
# src[] = { query }
intrinsic("rq_proceed", src_comp=[-1], dest_comp=1)
# src[] = { query, hit }
intrinsic("rq_generate_intersection", src_comp=[-1, 1])
# src[] = { query }
intrinsic("rq_confirm_intersection", src_comp=[-1])
# src[] = { query }
intrinsic("rq_load", src_comp=[-1], dest_comp=0, indices=[RAY_QUERY_VALUE,COMMITTED,COLUMN])
# Driver independent raytracing helpers
# rt_resume is a helper that that be the first instruction accesing the
# stack/scratch in a resume shader for a raytracing pipeline. It includes the
# resume index (for nir_lower_shader_calls_internal reasons) and the stack size
# of the variables spilled during the call. The stack size can be use to e.g.
# adjust a stack pointer.
intrinsic("rt_resume", indices=[CALL_IDX, STACK_SIZE])
# Lowered version of execute_callabe that includes the index of the resume
# shader, and the amount of scratch space needed for this call (.ie. how much
# to increase a stack pointer by).
# src[] = { sbt_index, payload }
intrinsic("rt_execute_callable", src_comp=[1, -1], indices=[CALL_IDX,STACK_SIZE])
# Lowered version of trace_ray in a similar vein to rt_execute_callable.
# src same as trace_ray
intrinsic("rt_trace_ray", src_comp=[-1, 1, 1, 1, 1, 1, 3, 1, 3, 1, -1],
indices=[CALL_IDX, STACK_SIZE])
# Atomic counters
#
# The *_deref variants take an atomic_uint nir_variable, while the other,
# lowered, variants take a buffer index and register offset. The buffer index
# is always constant, as there's no way to declare an array of atomic counter
# buffers.
#
# The register offset may be non-constant but must by dynamically uniform
# ("Atomic counters aggregated into arrays within a shader can only be indexed
# with dynamically uniform integral expressions, otherwise results are
# undefined.")
def atomic(name, flags=[]):
intrinsic(name + "_deref", src_comp=[-1], dest_comp=1, flags=flags)
intrinsic(name, src_comp=[1], dest_comp=1, indices=[BASE, RANGE_BASE], flags=flags)
def atomic2(name):
intrinsic(name + "_deref", src_comp=[-1, 1], dest_comp=1)
intrinsic(name, src_comp=[1, 1], dest_comp=1, indices=[BASE, RANGE_BASE])
def atomic3(name):
intrinsic(name + "_deref", src_comp=[-1, 1, 1], dest_comp=1)
intrinsic(name, src_comp=[1, 1, 1], dest_comp=1, indices=[BASE, RANGE_BASE])
atomic("atomic_counter_inc")
atomic("atomic_counter_pre_dec")
atomic("atomic_counter_post_dec")
atomic("atomic_counter_read", flags=[CAN_ELIMINATE])
atomic2("atomic_counter_add")
atomic2("atomic_counter_min")
atomic2("atomic_counter_max")
atomic2("atomic_counter_and")
atomic2("atomic_counter_or")
atomic2("atomic_counter_xor")
atomic2("atomic_counter_exchange")
atomic3("atomic_counter_comp_swap")
# Image load, store and atomic intrinsics.
#
# All image intrinsics come in three versions. One which take an image target
# passed as a deref chain as the first source, one which takes an index as the
# first source, and one which takes a bindless handle as the first source.
# In the first version, the image variable contains the memory and layout
# qualifiers that influence the semantics of the intrinsic. In the second and
# third, the image format and access qualifiers are provided as constant
# indices. Up through GLSL ES 3.10, the image index source may only be a
# constant array access. GLSL ES 3.20 and GLSL 4.00 allow dynamically uniform
# indexing.
#
# All image intrinsics take a four-coordinate vector and a sample index as
# 2nd and 3rd sources, determining the location within the image that will be
# accessed by the intrinsic. Components not applicable to the image target
# in use are undefined. Image store takes an additional four-component
# argument with the value to be written, and image atomic operations take
# either one or two additional scalar arguments with the same meaning as in
# the ARB_shader_image_load_store specification.
#
# The last source of many image intrinsics is the LOD. This source is zero
# unless e.g. SPV_AMD_shader_image_load_store_lod is supported.
def image(name, src_comp=[], extra_indices=[], **kwargs):
intrinsic("image_deref_" + name, src_comp=[-1] + src_comp,
indices=[IMAGE_DIM, IMAGE_ARRAY, FORMAT, ACCESS] + extra_indices, **kwargs)
intrinsic("image_" + name, src_comp=[1] + src_comp,
indices=[IMAGE_DIM, IMAGE_ARRAY, FORMAT, ACCESS, RANGE_BASE] + extra_indices, **kwargs)
intrinsic("bindless_image_" + name, src_comp=[-1] + src_comp,
indices=[IMAGE_DIM, IMAGE_ARRAY, FORMAT, ACCESS] + extra_indices, **kwargs)
image("load", src_comp=[4, 1, 1], extra_indices=[DEST_TYPE], dest_comp=0, flags=[CAN_ELIMINATE])
image("sparse_load", src_comp=[4, 1, 1], extra_indices=[DEST_TYPE], dest_comp=0, flags=[CAN_ELIMINATE])
image("store", src_comp=[4, 1, 0, 1], extra_indices=[SRC_TYPE])
image("atomic", src_comp=[4, 1, 1], dest_comp=1, extra_indices=[ATOMIC_OP])
image("atomic_swap", src_comp=[4, 1, 1, 1], dest_comp=1, extra_indices=[ATOMIC_OP])
image("size", dest_comp=0, src_comp=[1], flags=[CAN_ELIMINATE, CAN_REORDER])
image("levels", dest_comp=1, flags=[CAN_ELIMINATE, CAN_REORDER])
image("samples", dest_comp=1, flags=[CAN_ELIMINATE, CAN_REORDER])
image("texel_address", dest_comp=1, src_comp=[4, 1],
flags=[CAN_ELIMINATE, CAN_REORDER])
# This returns true if all samples within the pixel have equal color values.
image("samples_identical", dest_comp=1, src_comp=[4], flags=[CAN_ELIMINATE])
# Non-uniform access is not lowered for image_descriptor_amd.
# dest_comp can be either 4 (buffer) or 8 (image).
image("descriptor_amd", dest_comp=0, src_comp=[], flags=[CAN_ELIMINATE, CAN_REORDER])
# CL-specific format queries
image("format", dest_comp=1, flags=[CAN_ELIMINATE, CAN_REORDER])
image("order", dest_comp=1, flags=[CAN_ELIMINATE, CAN_REORDER])
# Multisample fragment mask load
# src_comp[0] is same as image load src_comp[0]
image("fragment_mask_load_amd", src_comp=[4], dest_comp=1, bit_sizes=[32], flags=[CAN_ELIMINATE, CAN_REORDER])
# Vulkan descriptor set intrinsics
#
# The Vulkan API uses a different binding model from GL. In the Vulkan
# API, all external resources are represented by a tuple:
#
# (descriptor set, binding, array index)
#
# where the array index is the only thing allowed to be indirect. The
# vulkan_surface_index intrinsic takes the descriptor set and binding as
# its first two indices and the array index as its source. The third
# index is a nir_variable_mode in case that's useful to the backend.
#
# The intended usage is that the shader will call vulkan_surface_index to
# get an index and then pass that as the buffer index ubo/ssbo calls.
#
# The vulkan_resource_reindex intrinsic takes a resource index in src0
# (the result of a vulkan_resource_index or vulkan_resource_reindex) which
# corresponds to the tuple (set, binding, index) and computes an index
# corresponding to tuple (set, binding, idx + src1).
intrinsic("vulkan_resource_index", src_comp=[1], dest_comp=0,
indices=[DESC_SET, BINDING, DESC_TYPE],
flags=[CAN_ELIMINATE, CAN_REORDER])
intrinsic("vulkan_resource_reindex", src_comp=[0, 1], dest_comp=0,
indices=[DESC_TYPE], flags=[CAN_ELIMINATE, CAN_REORDER])
intrinsic("load_vulkan_descriptor", src_comp=[-1], dest_comp=0,
indices=[DESC_TYPE], flags=[CAN_ELIMINATE, CAN_REORDER])
# atomic intrinsics
#
# All of these atomic memory operations read a value from memory, compute a new
# value using one of the operations below, write the new value to memory, and
# return the original value read.
#
# All variable operations take 2 sources except CompSwap that takes 3. These
# sources represent:
#
# 0: A deref to the memory on which to perform the atomic
# 1: The data parameter to the atomic function (i.e. the value to add
# in shared_atomic_add, etc).
# 2: For CompSwap only: the second data parameter.
#
# All SSBO operations take 3 sources except CompSwap that takes 4. These
# sources represent:
#
# 0: The SSBO buffer index (dynamically uniform in GLSL, possibly non-uniform
# with VK_EXT_descriptor_indexing).
# 1: The offset into the SSBO buffer of the variable that the atomic
# operation will operate on.
# 2: The data parameter to the atomic function (i.e. the value to add
# in ssbo_atomic_add, etc).
# 3: For CompSwap only: the second data parameter.
#
# All shared (and task payload) variable operations take 2 sources
# except CompSwap that takes 3.
# These sources represent:
#
# 0: The offset into the shared variable storage region that the atomic
# operation will operate on.
# 1: The data parameter to the atomic function (i.e. the value to add
# in shared_atomic_add, etc).
# 2: For CompSwap only: the second data parameter.
#
# All global operations take 2 sources except CompSwap that takes 3. These
# sources represent:
#
# 0: The memory address that the atomic operation will operate on.
# 1: The data parameter to the atomic function (i.e. the value to add
# in shared_atomic_add, etc).
# 2: For CompSwap only: the second data parameter.
#
# The 2x32 global variants use a vec2 for the memory address where component X
# has the low 32-bit and component Y has the high 32-bit.
#
# IR3 global operations take 32b vec2 as memory address. IR3 doesn't support
# float atomics.
#
# AGX global variants take a 64-bit base address plus a 32-bit offset in words.
# The offset is sign-extended or zero-extended based on the SIGN_EXTEND index.
#
# PCO global variants use a vec3 for the memory address and data, where component X
# has the low 32 address bits, component Y has the high 32 address bits, and component Z
# has the data parameter.
intrinsic("deref_atomic", src_comp=[-1, 1], dest_comp=1, indices=[ACCESS, ATOMIC_OP])
intrinsic("ssbo_atomic", src_comp=[-1, 1, 1], dest_comp=1, indices=[ACCESS, ATOMIC_OP, OFFSET_SHIFT])
intrinsic("shared_atomic", src_comp=[1, 1], dest_comp=1, indices=[BASE, ATOMIC_OP])
intrinsic("task_payload_atomic", src_comp=[1, 1], dest_comp=1, indices=[BASE, ATOMIC_OP])
intrinsic("global_atomic", src_comp=[1, 1], dest_comp=1, indices=[ATOMIC_OP])
intrinsic("global_atomic_2x32", src_comp=[2, 1], dest_comp=1, indices=[ATOMIC_OP])
intrinsic("global_atomic_amd", src_comp=[1, 1, 1], dest_comp=1, indices=[BASE, ATOMIC_OP])
intrinsic("global_atomic_agx", src_comp=[1, 1, 1], dest_comp=1, indices=[ATOMIC_OP, SIGN_EXTEND])
intrinsic("global_atomic_pco", src_comp=[3], dest_comp=1, indices=[ATOMIC_OP], bit_sizes=[32])
intrinsic("deref_atomic_swap", src_comp=[-1, 1, 1], dest_comp=1, indices=[ACCESS, ATOMIC_OP])
intrinsic("ssbo_atomic_swap", src_comp=[-1, 1, 1, 1], dest_comp=1, indices=[ACCESS, ATOMIC_OP, OFFSET_SHIFT])
intrinsic("shared_atomic_swap", src_comp=[1, 1, 1], dest_comp=1, indices=[BASE, ATOMIC_OP])
intrinsic("task_payload_atomic_swap", src_comp=[1, 1, 1], dest_comp=1, indices=[BASE, ATOMIC_OP])
intrinsic("global_atomic_swap", src_comp=[1, 1, 1], dest_comp=1, indices=[ATOMIC_OP])
intrinsic("global_atomic_swap_2x32", src_comp=[2, 1, 1], dest_comp=1, indices=[ATOMIC_OP])
intrinsic("global_atomic_swap_amd", src_comp=[1, 1, 1, 1], dest_comp=1, indices=[BASE, ATOMIC_OP])
intrinsic("global_atomic_swap_agx", src_comp=[1, 1, 1, 1], dest_comp=1, indices=[ATOMIC_OP, SIGN_EXTEND])
intrinsic("global_atomic_swap_pco", src_comp=[4], dest_comp=1, indices=[ATOMIC_OP], bit_sizes=[32])
def system_value(name, dest_comp, indices=[], bit_sizes=[32], can_reorder=True):
flags = [CAN_ELIMINATE, CAN_REORDER] if can_reorder else [CAN_ELIMINATE]
intrinsic("load_" + name, [], dest_comp, indices,
flags=flags, sysval=True,
bit_sizes=bit_sizes)
system_value("frag_coord", 4)
# 16-bit integer vec2 of the pixel X/Y in the framebuffer.
system_value("pixel_coord", 2, bit_sizes=[16])
# Scalar load of frag_coord Z/W component. Backends can lower frag_coord to
# pixel_coord + frag_coord_z/w, in case X/Y is available as an integer but Z/W
# requires interpolation.
system_value("frag_coord_z", 1)
system_value("frag_coord_w", 1)
system_value("point_coord", 2)
system_value("line_coord", 1)
system_value("front_face", 1, bit_sizes=[1, 32])
system_value("front_face_fsign", 1, bit_sizes=[32]) # front_face ? 1.0 : -1.0
system_value("vertex_id", 1)
system_value("vertex_id_zero_base", 1)
system_value("first_vertex", 1)
system_value("is_indexed_draw", 1)
system_value("base_vertex", 1)
system_value("instance_id", 1)
system_value("base_instance", 1)
system_value("draw_id", 1)
system_value("sample_id", 1)
system_value("sample_pos", 2)
# sample_pos_or_center is like sample_pos but does not imply per-sample
# shading. When per-sample dispatch is not enabled, it returns (0.5, 0.5).
system_value("sample_pos_or_center", 2)
system_value("sample_mask_in", 1)
system_value("primitive_id", 1)
system_value("invocation_id", 1)
system_value("tess_coord", 3)
# First 2 components of tess_coord only
system_value("tess_coord_xy", 2)
system_value("tess_level_outer", 4)
system_value("tess_level_inner", 2)
system_value("tess_level_outer_default", 4)
system_value("tess_level_inner_default", 2)
system_value("patch_vertices_in", 1)
system_value("local_invocation_id", 3)
system_value("local_invocation_index", 1)
# workgroup_id does not include the base_workgroup_id
system_value("workgroup_id", 3)
# The workgroup_index is intended for situations when a 3 dimensional
# workgroup_id is not available on the HW, but a 1 dimensional index is.
system_value("workgroup_index", 1)
# API specific base added to the workgroup_id, e.g. baseGroup* of vkCmdDispatchBase
system_value("base_workgroup_id", 3, bit_sizes=[32, 64])
system_value("user_clip_plane", 4, indices=[UCP_ID])
system_value("num_workgroups", 3)
system_value("num_vertices", 1)
# This can't be reordered because it's undefined after an invocation is demoted.
system_value("helper_invocation", 1, bit_sizes=[1, 32], can_reorder=False)
system_value("layer_id", 1)
system_value("view_index", 1)
system_value("subgroup_size", 1)
system_value("subgroup_invocation", 1)
system_value("amplification_id_kk", 1)
# These intrinsics provide a bitmask for all invocations, with one bit per
# invocation starting with the least significant bit, according to the
# following table,
#
# variable equation for bit values
# ---------------- --------------------------------
# subgroup_eq_mask bit index == subgroup_invocation
# subgroup_ge_mask bit index >= subgroup_invocation
# subgroup_gt_mask bit index > subgroup_invocation
# subgroup_le_mask bit index <= subgroup_invocation
# subgroup_lt_mask bit index < subgroup_invocation
#
# These correspond to gl_SubGroupEqMaskARB, etc. from GL_ARB_shader_ballot,
# and the above documentation is "borrowed" from that extension spec.
system_value("subgroup_eq_mask", 0, bit_sizes=[32, 64])
system_value("subgroup_ge_mask", 0, bit_sizes=[32, 64])
system_value("subgroup_gt_mask", 0, bit_sizes=[32, 64])
system_value("subgroup_le_mask", 0, bit_sizes=[32, 64])
system_value("subgroup_lt_mask", 0, bit_sizes=[32, 64])
system_value("num_subgroups", 1)
system_value("subgroup_id", 1)
system_value("workgroup_size", 3)
# note: the definition of global_invocation_id is based on
# ((workgroup_id + base_workgroup_id) * workgroup_size) + local_invocation_id.
system_value("global_invocation_id", 3, bit_sizes=[32, 64])
# API specific base added to the global_invocation_id
# e.g. global_work_offset of clEnqueueNDRangeKernel
system_value("base_global_invocation_id", 3, bit_sizes=[32, 64])
system_value("global_invocation_index", 1, bit_sizes=[32, 64])
# threads per dimension in an invocation
system_value("global_size", 3, bit_sizes=[32, 64])
system_value("work_dim", 1)
system_value("line_width", 1)
system_value("aa_line_width", 1)
# BASE=0 for global/shader, BASE=1 for local/function
system_value("scratch_base_ptr", 0, bit_sizes=[32,64], indices=[BASE])
system_value("constant_base_ptr", 0, bit_sizes=[32,64])
system_value("shared_base_ptr", 0, bit_sizes=[32,64])
system_value("global_base_ptr", 0, bit_sizes=[32,64])
# Address and size of a transform feedback buffer, indexed by BASE
system_value("xfb_address", 1, bit_sizes=[32,64], indices=[BASE])
system_value("xfb_size", 1, bit_sizes=[32], indices=[BASE])
# Address of the associated index buffer in a transform feedback program for an
# indexed draw. This will be used so transform feedback can pull the gl_VertexID
# from the index buffer.
system_value("xfb_index_buffer", 1, bit_sizes=[32,64])
# Currently active rasterization stream [0..3]
system_value("rasterization_stream", 1)
system_value("frag_size", 2)
system_value("frag_invocation_count", 1)
# Whether smooth lines or polygon smoothing is enabled
system_value("poly_line_smooth_enabled", 1, bit_sizes=[1])
# System values for ray tracing.
system_value("ray_launch_id", 3)
system_value("ray_launch_size", 3)
system_value("ray_world_origin", 3)
system_value("ray_world_direction", 3)
system_value("ray_object_origin", 3)
system_value("ray_object_direction", 3)
system_value("ray_t_min", 1)
system_value("ray_t_max", 1)
system_value("ray_object_to_world", 3, indices=[COLUMN])
system_value("ray_world_to_object", 3, indices=[COLUMN])
system_value("ray_hit_kind", 1)
system_value("ray_flags", 1)
system_value("ray_geometry_index", 1)
system_value("ray_instance_custom_index", 1)
system_value("shader_record_ptr", 1, bit_sizes=[64])
system_value("cull_mask", 1)
system_value("ray_triangle_vertex_positions", 3, indices=[COLUMN])
# Driver-specific viewport scale/offset parameters.
#
# VC4 and V3D need to emit a scaled version of the position in the vertex
# shaders for binning, and having system values lets us move the math for that
# into NIR.
#
# Panfrost needs to implement all coordinate transformation in the
# vertex shader; system values allow us to share this routine in NIR.
system_value("viewport_x_scale", 1)
system_value("viewport_y_scale", 1)
system_value("viewport_z_scale", 1)
system_value("viewport_x_offset", 1)
system_value("viewport_y_offset", 1)
system_value("viewport_z_offset", 1)
system_value("viewport_scale", 3)
system_value("viewport_offset", 3)
# Pack xy scale and offset into a vec4 load (used by AMD NGG primitive culling)
system_value("cull_triangle_viewport_xy_scale_and_offset_amd", 4)
system_value("cull_line_viewport_xy_scale_and_offset_amd", 4)
# Blend constant color values. Float values are clamped. Vectored versions are
# provided as well for driver convenience
system_value("blend_const_color_r_float", 1)
system_value("blend_const_color_g_float", 1)
system_value("blend_const_color_b_float", 1)
system_value("blend_const_color_a_float", 1)
system_value("blend_const_color_rgba", 4)
system_value("blend_const_color_rgba8888_unorm", 1)
system_value("blend_const_color_aaaa8888_unorm", 1)
# System values for gl_Color, for radeonsi which interpolates these in the
# shader prolog to handle two-sided color without recompiles and therefore
# doesn't handle these in the main shader part like normal varyings.
system_value("color0", 4)
system_value("color1", 4)
# System value for internal compute shaders in radeonsi.
system_value("user_data_amd", 8)
# In a fragment shader, the current sample mask. At the beginning of the shader,
# this is the same as load_sample_mask_in, but as the shader is executed, it may
# be affected by writes, discards, etc.
#
# No frontend generates this, but drivers may use it for internal lowerings.
intrinsic("load_sample_mask", [], 1, [], flags=[CAN_ELIMINATE], sysval=True,
bit_sizes=[32])
# Barycentric coordinate intrinsics.
#
# These set up the barycentric coordinates for a particular interpolation.
# The first four are for the simple cases: pixel, centroid, per-sample
# (at gl_SampleID), or pull model (1/W, 1/I, 1/J) at the pixel center. The next
# two handle interpolating at a specified sample location, or interpolating
# with a vec2 offset,
#
# The interp_mode index should be either the INTERP_MODE_SMOOTH or
# INTERP_MODE_NOPERSPECTIVE enum values.
#
# The vec2 value produced by these intrinsics is intended for use as the
# barycoord source of a load_interpolated_input intrinsic.
#
# The vec3 variants are intended to be used for input barycentric coordinates
# which are system values on most hardware, compared to the vec2 variants which
# interpolates input varyings.
def barycentric(name, dst_comp, src_comp=[]):
intrinsic("load_barycentric_" + name, src_comp=src_comp, dest_comp=dst_comp,
indices=[INTERP_MODE], flags=[CAN_ELIMINATE, CAN_REORDER])
# no sources.
barycentric("pixel", 2)
barycentric("coord_pixel", 3)
barycentric("centroid", 2)
barycentric("coord_centroid", 3)
barycentric("sample", 2)
barycentric("coord_sample", 3)
barycentric("model", 3)
# src[] = { sample_id }.
barycentric("at_sample", 2, [1])
barycentric("coord_at_sample", 3, [1])
# src[] = { offset.xy }.
barycentric("at_offset", 2, [2])
barycentric("at_offset_nv", 2, [1])
barycentric("coord_at_offset", 3, [2])
# Load sample position:
#
# Takes a sample # and returns a sample position. Used for lowering
# interpolateAtSample() to interpolateAtOffset()
intrinsic("load_sample_pos_from_id", src_comp=[1], dest_comp=2,
flags=[CAN_ELIMINATE, CAN_REORDER])
# Load input attachment coordinate:
#
# Takes an input attachment index and returns an ivec with the position in
# input attachment space in .xy and the input attachment array index in .z.
intrinsic("load_input_attachment_coord", src_comp=[1], dest_comp=3,
bit_sizes=[32], flags=[CAN_ELIMINATE, CAN_REORDER])
# Demote a subset of samples given by a specified sample mask. This acts like a
# per-sample demote, or an inverted accumulating gl_SampleMask write.
intrinsic("demote_samples", src_comp=[1])
# Convert float value to coverage mask.
intrinsic("alpha_to_coverage", src_comp=[1], dest_comp=1, indices=[],
flags=[CAN_ELIMINATE, CAN_REORDER], bit_sizes=[16])
intrinsic("load_persp_center_rhw_ir3", dest_comp=1,
flags=[CAN_ELIMINATE, CAN_REORDER])
# Load texture scaling values:
#
# Takes a sampler # and returns 1/size values for multiplying to normalize
# texture coordinates. Used for lowering rect textures.
intrinsic("load_texture_scale", src_comp=[1], dest_comp=2,
flags=[CAN_ELIMINATE, CAN_REORDER])
# Gets the texture src. This intrinsic will be lowered once functions have
# been inlined and we know if the src is bindless or not.
intrinsic("deref_texture_src", src_comp=[1], dest_comp=1,
flags=[CAN_ELIMINATE, CAN_REORDER])
# Fragment shader input interpolation delta intrinsic.
#
# For hw where fragment shader input interpolation is handled in shader, the
# load_fs_input_interp deltas intrinsics can be used to load the input deltas
# used for interpolation as follows:
#
# vec3 iid = load_fs_input_interp_deltas(varying_slot)
# vec2 bary = load_barycentric_*(...)
# float result = iid.x + iid.y * bary.y + iid.z * bary.x
intrinsic("load_fs_input_interp_deltas", src_comp=[1], dest_comp=3,
indices=[BASE, COMPONENT, IO_SEMANTICS], flags=[CAN_ELIMINATE, CAN_REORDER])
# Load operations pull data from some piece of GPU memory. All load
# operations operate in terms of offsets into some piece of theoretical
# memory. Loads from externally visible memory (UBO and SSBO) simply take a
# byte offset as a source. Loads from opaque memory (uniforms, inputs, etc.)
# take a base+offset pair where the nir_intrinsic_base() gives the location
# of the start of the variable being loaded and and the offset source is a
# offset into that variable.
#
# Uniform load operations have a nir_intrinsic_range() index that specifies the
# range (starting at base) of the data from which we are loading. If
# range == 0, then the range is unknown.
#
# UBO load operations have a nir_intrinsic_range_base() and
# nir_intrinsic_range() that specify the byte range [range_base,
# range_base+range] of the UBO that the src offset access must lie within.
#
# Some load operations such as UBO/SSBO load and per_vertex loads take an
# additional source to specify which UBO/SSBO/vertex to load from.
#
# The exact address type depends on the lowering pass that generates the
# load/store intrinsics. Typically, this is vec4 units for things such as
# varying slots and float units for fragment shader inputs. UBO and SSBO
# offsets are always in bytes.
def load(name, src_comp, indices=[], flags=[]):
intrinsic("load_" + name, src_comp, dest_comp=0, indices=indices,
flags=flags)
# src[] = { offset }.
load("uniform", [1], [BASE, RANGE, DEST_TYPE], [CAN_ELIMINATE, CAN_REORDER])
# src[] = { buffer_index, offset }.
load("ubo", [-1, 1], [ACCESS, ALIGN_MUL, ALIGN_OFFSET, RANGE_BASE, RANGE], flags=[CAN_ELIMINATE, CAN_REORDER])
# src[] = { buffer_index, offset in vec4 units }. base is also in vec4 units.
load("ubo_vec4", [-1, 1], [ACCESS, BASE, COMPONENT], flags=[CAN_ELIMINATE, CAN_REORDER])
# src[] = { offset }.
load("input", [1], [BASE, RANGE, COMPONENT, DEST_TYPE, IO_SEMANTICS], [CAN_ELIMINATE, CAN_REORDER])
# src[] = { vertex_id, offset }.
load("input_vertex", [1, 1], [BASE, COMPONENT, DEST_TYPE, IO_SEMANTICS], [CAN_ELIMINATE, CAN_REORDER])
# src[] = { vertex, offset }.
load("per_vertex_input", [1, 1], [BASE, RANGE, COMPONENT, DEST_TYPE, IO_SEMANTICS], [CAN_ELIMINATE, CAN_REORDER])
# src[] = { barycoord, offset }.
load("interpolated_input", [2, 1], [BASE, COMPONENT, DEST_TYPE, IO_SEMANTICS], [CAN_ELIMINATE, CAN_REORDER])
# src[] = { offset }.
load("per_primitive_input", [1], [BASE, COMPONENT, DEST_TYPE, IO_SEMANTICS], [CAN_ELIMINATE, CAN_REORDER])
# src[] = { buffer_index, offset }.
load("ssbo", [-1, 1], [ACCESS, ALIGN_MUL, ALIGN_OFFSET, OFFSET_SHIFT], [CAN_ELIMINATE])
# src[] = { buffer_index, offset }
load("ssbo_address", [1, 1], [], [CAN_ELIMINATE, CAN_REORDER])
# src[] = { offset }.
load("output", [1], [BASE, RANGE, COMPONENT, DEST_TYPE, IO_SEMANTICS], flags=[CAN_ELIMINATE])
# src[] = { vertex, offset }.
load("per_vertex_output", [1, 1], [BASE, RANGE, COMPONENT, DEST_TYPE, IO_SEMANTICS], [CAN_ELIMINATE])
# src[] = { view_index, offset }.
# when nir_shader_compiler_options::compact_view_index is set, the view_index
# src refers to the Nth enabled view, and do not correspond directly to
# gl_ViewIndex. See the compact_view_index docs for more details.
load("per_view_output", [1, 1], [BASE, RANGE, COMPONENT, DEST_TYPE, IO_SEMANTICS], [CAN_ELIMINATE])
# src[] = { primitive, offset }.
load("per_primitive_output", [1, 1], [BASE, COMPONENT, DEST_TYPE, IO_SEMANTICS], [CAN_ELIMINATE])
# src[] = { offset }.
load("shared", [1], [BASE, ACCESS, ALIGN_MUL, ALIGN_OFFSET], [CAN_ELIMINATE])
# src[] = { offset }.
load("task_payload", [1], [BASE, ACCESS, ALIGN_MUL, ALIGN_OFFSET], [CAN_ELIMINATE])
# src[] = { offset }.
load("push_constant", [1], [BASE, RANGE, ALIGN_MUL, ALIGN_OFFSET], [CAN_ELIMINATE, CAN_REORDER])
# src[] = { offset }.
load("constant", [1], [BASE, RANGE, ACCESS, ALIGN_MUL, ALIGN_OFFSET],
[CAN_ELIMINATE, CAN_REORDER])
# src[] = { address }.
load("global", [1], [ACCESS, ALIGN_MUL, ALIGN_OFFSET], [CAN_ELIMINATE])
# src[] = { base_address, offset, bound }.
load("global_bounded", [1, 1, 1], [ACCESS, ALIGN_MUL, ALIGN_OFFSET],
[CAN_ELIMINATE])
# src[] = { address }.
load("global_2x32", [2], [ACCESS, ALIGN_MUL, ALIGN_OFFSET], [CAN_ELIMINATE])
# src[] = { address }.
load("global_constant", [1], [ACCESS, ALIGN_MUL, ALIGN_OFFSET],
[CAN_ELIMINATE, CAN_REORDER])
# src[] = { base_address, offset }.
load("global_constant_offset", [1, 1], [ACCESS, ALIGN_MUL, ALIGN_OFFSET],
[CAN_ELIMINATE, CAN_REORDER])
# src[] = { base_address, offset, bound }.
load("global_constant_bounded", [1, 1, 1], [ACCESS, ALIGN_MUL, ALIGN_OFFSET],
[CAN_ELIMINATE, CAN_REORDER])
# src[] = { address }.
load("kernel_input", [1], [BASE, RANGE, ALIGN_MUL, ALIGN_OFFSET], [CAN_ELIMINATE, CAN_REORDER])
# src[] = { offset }.
load("scratch", [1], [ACCESS, ALIGN_MUL, ALIGN_OFFSET], [CAN_ELIMINATE])
# Stores work the same way as loads, except now the first source is the value
# to store and the second (and possibly third) source specify where to store
# the value. SSBO and shared memory stores also have a
# nir_intrinsic_write_mask()
def store(name, srcs, indices=[], flags=[]):
intrinsic("store_" + name, [0] + srcs, indices=indices, flags=flags)
# src[] = { value, offset }.
store("output", [1], [BASE, RANGE, WRITE_MASK, COMPONENT, SRC_TYPE, IO_SEMANTICS, IO_XFB, IO_XFB2])
# src[] = { value, vertex, offset }.
store("per_vertex_output", [1, 1], [BASE, RANGE, WRITE_MASK, COMPONENT, SRC_TYPE, IO_SEMANTICS])
# src[] = { value, view_index, offset }.
store("per_view_output", [1, 1], [BASE, RANGE, WRITE_MASK, COMPONENT, SRC_TYPE, IO_SEMANTICS])
# src[] = { value, primitive, offset }.
store("per_primitive_output", [1, 1], [BASE, RANGE, WRITE_MASK, COMPONENT, SRC_TYPE, IO_SEMANTICS])
# src[] = { value, block_index, offset }
store("ssbo", [-1, 1], [WRITE_MASK, ACCESS, ALIGN_MUL, ALIGN_OFFSET, OFFSET_SHIFT])
# src[] = { value, offset }.
store("shared", [1], [BASE, ACCESS, WRITE_MASK, ALIGN_MUL, ALIGN_OFFSET])
# src[] = { value, offset }.
store("task_payload", [1], [BASE, ACCESS, WRITE_MASK, ALIGN_MUL, ALIGN_OFFSET])
# src[] = { value, address }.
store("global", [1], [WRITE_MASK, ACCESS, ALIGN_MUL, ALIGN_OFFSET])
# src[] = { value, address }.
store("global_2x32", [2], [WRITE_MASK, ACCESS, ALIGN_MUL, ALIGN_OFFSET])
# src[] = { value, offset }.
store("scratch", [1], [ALIGN_MUL, ALIGN_OFFSET, WRITE_MASK])
# Intrinsic to load/store from the call stack.
# BASE is the offset relative to the current position of the stack
# src[] = { }.
intrinsic("load_stack", [], dest_comp=0,
indices=[BASE, ALIGN_MUL, ALIGN_OFFSET, CALL_IDX, VALUE_ID],
flags=[CAN_ELIMINATE])
# src[] = { value }.
intrinsic("store_stack", [0],
indices=[BASE, ALIGN_MUL, ALIGN_OFFSET, WRITE_MASK, CALL_IDX, VALUE_ID])
# A bit field to implement SPIRV FragmentShadingRateKHR
# bit | name | description
# 0 | Vertical2Pixels | Fragment invocation covers 2 pixels vertically
# 1 | Vertical4Pixels | Fragment invocation covers 4 pixels vertically
# 2 | Horizontal2Pixels | Fragment invocation covers 2 pixels horizontally
# 3 | Horizontal4Pixels | Fragment invocation covers 4 pixels horizontally
intrinsic("load_frag_shading_rate", dest_comp=1, bit_sizes=[32],
flags=[CAN_ELIMINATE, CAN_REORDER])
# Whether the rasterized fragment is fully covered by the generating primitive.
system_value("fully_covered", dest_comp=1, bit_sizes=[1])
# OpenCL printf instruction
# Second source is a deref to a struct containing the args
# Dest is success or failure
intrinsic("printf", src_comp=[1], dest_comp=1, bit_sizes=[32], indices=[FMT_IDX])
# Since most drivers will want to lower to just dumping args
# in a buffer, nir_lower_printf will do that, but requires
# the driver to at least provide a base location and size
system_value("printf_buffer_address", 1, bit_sizes=[32,64])
system_value("printf_buffer_size", 1, bit_sizes=[32])
# Abort the program, triggering device fault. The invoking thread halts
# immediately. Other threads eventually terminate.
#
# This does not take a payload, payloads should be specified with a preceding
# printf. After lowering, the intrinsic will set an aborted? bit in the printf
# buffer. This avoids a separate abort buffer.
intrinsic("printf_abort")
# Mesh shading MultiView intrinsics
system_value("mesh_view_count", 1)
load("mesh_view_indices", [1], [BASE, RANGE], [CAN_ELIMINATE, CAN_REORDER])
# Used to pass values from the preamble to the main shader.
# This should use something similar to Vulkan push constants and load_preamble
# should be relatively cheap.
# For now we only support accesses with a constant offset.
load("preamble", [], indices=[BASE, PREAMBLE_CLASS],
flags=[CAN_ELIMINATE, CAN_REORDER])
store("preamble", [], indices=[BASE, PREAMBLE_CLASS])
# src[] = { value, offset }.
store("preamble_dynamic", [1], indices=[PREAMBLE_CLASS])
# A 64-bit bitfield indexed by I/O location storing 1 in bits corresponding to
# varyings that have the flat interpolation specifier in the fragment shader and
# 0 otherwise
system_value("flat_mask", 1, bit_sizes=[64])
# Whether provoking vertex mode is last
system_value("provoking_last", 1)
# SPV_KHR_cooperative_matrix.
#
# Cooperative matrices are referred through derefs to variables,
# the destination of the operations appears as the first source,
# ordering follows SPIR-V operation.
#
# Load/Store include an extra source for stride, since that
# can be a _dynamically_ uniform value.
#
# Length takes a type not a value, that's encoded as a MATRIX_DESC.
intrinsic("cmat_construct", src_comp=[-1, 1])
intrinsic("cmat_load", src_comp=[-1, -1, 1], indices=[MATRIX_LAYOUT])
intrinsic("cmat_store", src_comp=[-1, -1, 1], indices=[MATRIX_LAYOUT])
intrinsic("cmat_length", src_comp=[], dest_comp=1, indices=[CMAT_DESC], bit_sizes=[32])
intrinsic("cmat_muladd", src_comp=[-1, -1, -1, -1], indices=[SATURATE, CMAT_SIGNED_MASK])
intrinsic("cmat_convert", src_comp=[-1, -1], indices=[SATURATE, CMAT_SIGNED_MASK])
intrinsic("cmat_unary_op", src_comp=[-1, -1], indices=[ALU_OP])
intrinsic("cmat_binary_op", src_comp=[-1, -1, -1], indices=[ALU_OP])
intrinsic("cmat_scalar_op", src_comp=[-1, -1, -1], indices=[ALU_OP])
intrinsic("cmat_bitcast", src_comp=[-1, -1])
intrinsic("cmat_extract", src_comp=[-1, 1], dest_comp=1)
intrinsic("cmat_insert", src_comp=[-1, 1, -1, 1])
intrinsic("cmat_copy", src_comp=[-1, -1])
intrinsic("cmat_transpose", src_comp=[-1, -1])
# Select an output vertex in a poly GS. Takes the stream-local vertex ID.
intrinsic("select_vertex_poly", src_comp=[1], indices=[STREAM_ID])
# Emit a primitive (a point list, a line strip, or a triangle strip).
# Sources: (index offset, first vertex, number of vertices, # of XFB primitives before).
intrinsic("emit_primitive_poly", src_comp=[1, 1, 1, 1], indices=[STREAM_ID])
# Transform a given address to be used as read-write,
# allowing to transition a "sink" read-only address to the read-write address.
intrinsic("ro_to_rw_poly", src_comp=[1], dest_comp=1, flags=[CAN_ELIMINATE, CAN_REORDER], bit_sizes=[64])
# Get the address representing the read-only "sink" address (always read 0)
system_value("ro_sink_address_poly", 1, bit_sizes=[64])
# mesa_prim for the input topology (in a geometry shader)
system_value("input_topology_poly", 1)
# Pointer to the buffer passing outputs VS->TCS, VS->GS, or TES->GS linkage.
system_value("vs_output_buffer_poly", 1, bit_sizes=[64])
# Mask of VS->TCS, VS->GS, or TES->GS outputs. This is modelled as a sysval
# so it can be dynamic with shader objects or constant folded with monolithic.
system_value("vs_outputs_poly", 1, bit_sizes=[64])
# Address of state for poly input assembly lowering for geometry/tessellation
system_value("input_assembly_buffer_poly", 1, bit_sizes=[64])
# Address of the parameter buffer for poly geometry shaders
system_value("geometry_param_buffer_poly", 1, bit_sizes=[64])
# Address of the parameter buffer for poly tessellation shaders
system_value("tess_param_buffer_poly", 1, bit_sizes=[64])
# Address of the pipeline statistic query result indexed by BASE
system_value("stat_query_address_poly", 1, bit_sizes=[64], indices=[BASE])
# IR3-specific version of most SSBO intrinsics. The only different
# compare to the originals is that they add an extra source to hold
# the dword-offset, which is needed by the backend code apart from
# the byte-offset already provided by NIR in one of the sources.
#
# NIR lowering pass 'ir3_nir_lower_io_offset' will replace the
# original SSBO intrinsics by these, placing the computed
# dword-offset always in the last source.
#
# The float versions are not handled because those are not supported
# by the backend.
store("ssbo_ir3", [1, 1, 1],
indices=[BASE, WRITE_MASK, ACCESS, ALIGN_MUL, ALIGN_OFFSET, OFFSET_SHIFT])
load("ssbo_ir3", [1, 1, 1],
indices=[BASE, ACCESS, ALIGN_MUL, ALIGN_OFFSET, OFFSET_SHIFT], flags=[CAN_ELIMINATE])
intrinsic("ssbo_atomic_ir3", src_comp=[1, 1, 1, 1], dest_comp=1,
indices=[ACCESS, ATOMIC_OP, OFFSET_SHIFT])
intrinsic("ssbo_atomic_swap_ir3", src_comp=[1, 1, 1, 1, 1], dest_comp=1,
indices=[ACCESS, ATOMIC_OP, OFFSET_SHIFT])
# IR3-specific intrinsic for UAVs, which are like SSBOs but with a source
# for which "record" to access as well as the offset within the record, instead
# of just an offset. The record stride is part of the descriptor.
# Currently this is just used for the ray-tracing TLAS descriptor, where a
# normal SSBO wouldn't have enough range.
load("uav_ir3", [1, 2],
indices=[ACCESS, ALIGN_MUL, ALIGN_OFFSET], flags=[CAN_ELIMINATE])
# IR3 intrinsic for "ray_intersection" instruction.
# The input and output arguments are the same as the instruction.
# See https://gitlab.freedesktop.org/freedreno/freedreno/-/wikis/a7xx-ray-tracing
intrinsic("ray_intersection_ir3", src_comp=[2, 1, 8, 1], dest_comp=5,
flags=[CAN_REORDER, CAN_ELIMINATE])
# System values for freedreno geometry shaders.
system_value("vs_primitive_stride_ir3", 1)
system_value("vs_vertex_stride_ir3", 1)
system_value("gs_header_ir3", 1)
system_value("primitive_location_ir3", 1, indices=[DRIVER_LOCATION])
# System values for freedreno tessellation shaders.
system_value("hs_patch_stride_ir3", 1)
system_value("tess_factor_base_ir3", 2)
system_value("tess_param_base_ir3", 2)
system_value("tcs_header_ir3", 1)
system_value("rel_patch_id_ir3", 1)
# System values for freedreno compute shaders.
system_value("subgroup_id_shift_ir3", 1)
# System values for freedreno fragment shaders.
intrinsic("load_frag_coord_unscaled_ir3", dest_comp=4,
flags=[CAN_ELIMINATE, CAN_REORDER], bit_sizes=[32])
# Per-view gl_FragSizeEXT and gl_FragCoord offset.
intrinsic("load_frag_size_ir3", src_comp=[1], dest_comp=2, indices=[RANGE],
flags=[CAN_ELIMINATE, CAN_REORDER], bit_sizes=[32])
intrinsic("load_frag_offset_ir3", src_comp=[1], dest_comp=2, indices=[RANGE],
flags=[CAN_ELIMINATE, CAN_REORDER], bit_sizes=[32])
# IR3-specific load/store intrinsics. These access a buffer used to pass data
# between geometry stages - perhaps it's explicit access to the vertex cache.
# src[] = { value, offset }.
store("shared_ir3", [1], [BASE, ALIGN_MUL, ALIGN_OFFSET])
# src[] = { offset }.
load("shared_ir3", [1], [BASE, ALIGN_MUL, ALIGN_OFFSET], [CAN_ELIMINATE])
# IR3-specific load/store global intrinsics. They take a 64-bit base address
# and a 32-bit offset. The hardware will add the base and the offset, which
# saves us from doing 64-bit math on the base address.
# src[] = { value, address(vec2 of hi+lo uint32_t), offset }.
# const_index[] = { write_mask, align_mul, align_offset }
store("global_ir3", [1, 1], indices=[ACCESS, ALIGN_MUL, ALIGN_OFFSET])
# src[] = { address(vec2 of hi+lo uint32_t), offset }.
# const_index[] = { access, align_mul, align_offset }
# the alignment applies to the base address
load("global_ir3", [1, 1], indices=[ACCESS, ALIGN_MUL, ALIGN_OFFSET, RANGE_BASE, RANGE], flags=[CAN_ELIMINATE])
# Etnaviv-specific load/glboal intrinsics. They take a 32-bit base address and
# a 32-bit offset, which doesn't need to be an immediate.
# src[] = { value, address, 32-bit offset }.
store("global_etna", [1, 1], [WRITE_MASK, ACCESS, ALIGN_MUL, ALIGN_OFFSET])
# src[] = { address, 32-bit offset }.
load("global_etna", [1, 1], [ACCESS, ALIGN_MUL, ALIGN_OFFSET], [CAN_ELIMINATE])
# IR3-specific bindless handle specifier. Similar to vulkan_resource_index, but
# without the binding because the hardware expects a single flattened index
# rather than a (binding, index) pair. We may also want to use this with GL.
# Note that this doesn't actually turn into a HW instruction.
intrinsic("bindless_resource_ir3", [1], dest_comp=1, indices=[DESC_SET], flags=[CAN_ELIMINATE, CAN_REORDER])
# IR3-specific intrinsics for shader preamble. These are meant to be used like
# this:
#
# if (preamble_start()) {
# if (subgroupElect()) {
# // preamble
# ...
# preamble_end();
# }
# }
# // main shader
# ...
intrinsic("preamble_start_ir3", [], dest_comp=1, flags=[CAN_ELIMINATE, CAN_REORDER])
barrier("preamble_end_ir3")
# IR3-specific intrinsic to choose any invocation. This is implemented the same
# as elect, except that it doesn't require helper invocations. Used by preambles.
intrinsic("elect_any_ir3", dest_comp=1, flags=[CAN_ELIMINATE])
# IR3-specific intrinsic for stc. Should be used in the shader preamble.
store("const_ir3", [], indices=[BASE])
# IR3-specific intrinsic for loading from a const reg.
load("const_ir3", [1], indices=[BASE], flags=[CAN_ELIMINATE, CAN_REORDER])
# IR3-specific intrinsic for ldc.k. Copies UBO to constant file.
# base is the const file base in components, range is the amount to copy in
# vec4's.
intrinsic("copy_ubo_to_uniform_ir3", [1, 1], indices=[BASE, RANGE])
# IR3-specific intrinsic for ldg.k.
# base is an offset to apply to the address in bytes, range_base is the
# const file base in components, range is the amount to copy in vec4's.
intrinsic("copy_global_to_uniform_ir3", [1], indices=[BASE, RANGE_BASE, RANGE])
# IR3-specific intrinsic for stsc. Loads from push consts to constant file
# Should be used in the shader preamble.
intrinsic("copy_push_const_to_uniform_ir3", [1], indices=[BASE, RANGE])
intrinsic("brcst_active_ir3", dest_comp=1, src_comp=[1, 1], bit_sizes=src0,
indices=[CLUSTER_SIZE])
intrinsic("reduce_clusters_ir3", dest_comp=1, src_comp=[1], bit_sizes=src0,
indices=[REDUCTION_OP])
intrinsic("inclusive_scan_clusters_ir3", dest_comp=1, src_comp=[1],
bit_sizes=src0, indices=[REDUCTION_OP])
intrinsic("exclusive_scan_clusters_ir3", dest_comp=1, src_comp=[1, 1],
bit_sizes=src0, indices=[REDUCTION_OP])
# Like shuffle_{xor,up,down} except with a uniform index. Necessary since the
# ir3 shfl instruction doesn't work with divergent indices.
intrinsic("shuffle_xor_uniform_ir3", src_comp=[0, 1], dest_comp=0,
bit_sizes=src0, flags=[CAN_ELIMINATE])
intrinsic("shuffle_up_uniform_ir3", src_comp=[0, 1], dest_comp=0,
bit_sizes=src0, flags=[CAN_ELIMINATE])
intrinsic("shuffle_down_uniform_ir3", src_comp=[0, 1], dest_comp=0,
bit_sizes=src0, flags=[CAN_ELIMINATE])
# IR3-specific intrinsics for prefetching descriptors in preambles.
intrinsic("prefetch_sam_ir3", [1, 1], flags=[CAN_REORDER])
intrinsic("prefetch_tex_ir3", [1], flags=[CAN_REORDER])
intrinsic("prefetch_ubo_ir3", [1], flags=[CAN_REORDER])
# Panfrost-specific intrinsic for loading vertex attributes. Takes explicit
# vertex and instance IDs which we need in order to implement vertex attribute
# divisor with non-zero base instance on v9+.
# src[] = { vertex_id, instance_id, offset }
load("attribute_pan", [1, 1, 1], [BASE, COMPONENT, DEST_TYPE, IO_SEMANTICS], [CAN_ELIMINATE, CAN_REORDER])
# Panfrost-specific intrinsic to load the shader_output special-FAU value on Avalon.
intrinsic("load_shader_output_pan", dest_comp=1, src_comp=[], bit_sizes=[32],
indices=[], flags=[CAN_REORDER, CAN_ELIMINATE])
# Panfrost-specific intrinsics for accessing the raw vertex ID and the
# associated offset such that
# vertex_id = raw_vertex_id_pan + raw_vertex_offset_pan
# The raw vertex ID differs from the zero-based vertex ID in that, in an index
# draw, it is offset by the minimum vertex ID in the index buffer range
# covered by the draw
system_value("raw_vertex_id_pan", 1)
system_value("raw_vertex_offset_pan", 1)
# Intrinsics used by the Midgard/Bifrost blend pipeline. These are defined
# within a blend shader to read/write the raw value from the tile buffer,
# without applying any format conversion in the process. If the shader needs
# usable pixel values, it must apply format conversions itself.
#
# These definitions are generic, but they are explicitly vendored to prevent
# other drivers from using them, as their semantics is defined in terms of the
# Midgard/Bifrost hardware tile buffer and may not line up with anything sane.
# One notable divergence is sRGB, which is asymmetric: raw_input_pan requires
# an sRGB->linear conversion, but linear values should be written to
# raw_output_pan and the hardware handles linear->sRGB.
#
# store_raw_output_pan is used only for blend shaders, and writes out only a
# single 128-bit chunk. To support multisampling, the BASE index specifies the
# bas sample index written out.
# src[] = { value }
store("raw_output_pan", [], [IO_SEMANTICS, BASE])
store("combined_output_pan", [1, 1, 1, 4], [IO_SEMANTICS, COMPONENT, SRC_TYPE, DEST_TYPE])
load("raw_output_pan", [1], [IO_SEMANTICS], [CAN_ELIMINATE, CAN_REORDER])
# Like the frag_coord_zw intrinsic, but takes a barycentric. This is needed for
# noperspective lowering.
# src[] = { barycoord }
intrinsic("load_frag_coord_zw_pan", [2], dest_comp=1, indices=[COMPONENT], flags=[CAN_ELIMINATE, CAN_REORDER], bit_sizes=[32])
# Loads the sampler paramaters <min_lod, max_lod, lod_bias>
# src[] = { sampler_index }
load("sampler_lod_parameters", [1], flags=[CAN_ELIMINATE, CAN_REORDER])
# Like load_output but using a specified render target and conversion descriptor
# src[] = { target, sample, conversion }
# target must be in the [0..7] range when io_semantics.location is FRAG_RESULT_DATA0
# and is ignored otherwise
load("converted_output_pan", [1, 1, 1], indices=[ACCESS, DEST_TYPE, IO_SEMANTICS], flags=[CAN_ELIMINATE])
# Like converted_output_pan but for case where the output is never written by the shader
# This is used to relax waits on tile-buffer accesses and the target is read-only
# src[] = { target, sample, conversion }
# target must be in the [0..7] range when io_semantics.location is FRAG_RESULT_DATA0
# and is ignored otherwise
load("readonly_output_pan", [1, 1, 1], indices=[ACCESS, DEST_TYPE, IO_SEMANTICS], flags=[CAN_ELIMINATE])
# Load input attachment target
# src[] = { input_attachment_index }
# valid targets are:
# 0..7: Color[0..7]
# 255: Depth or stencil (the actual target is known based on the nir_alu_type)
# ~0: No target (input attachment load must be lowered to texture load in that case)
intrinsic("load_input_attachment_target_pan", [1], dest_comp=1, flags=[CAN_ELIMINATE, CAN_REORDER], bit_sizes=[32])
# Load input attachment conversion descriptor
# src[] = { input_attachment_index }
intrinsic("load_input_attachment_conv_pan", [1], dest_comp=1, flags=[CAN_ELIMINATE, CAN_REORDER], bit_sizes=[32])
# Load the render target conversion descriptor for a given render target given
# in the BASE index. Converts to a type with size given by the source type.
# Valid in fragment and blend stages.
system_value("rt_conversion_pan", 1, indices=[BASE, SRC_TYPE], bit_sizes=[32])
# Loads the sample position array on Bifrost, in a packed Arm-specific format
system_value("sample_positions_pan", 1, bit_sizes=[64])
# In a fragment shader, is the framebuffer single-sampled? 0/~0 bool
system_value("multisampled_pan", 1, bit_sizes=[32])
# In a vertex shader, a bitfield of varying slots that use noperspective
# interpolation in the linked fragment shader. Since special slots cannot be
# noperspective, this is 32 bits and starts from VARYING_SLOT_VAR0.
system_value("noperspective_varyings_pan", 1, bit_sizes=[32])
# System values for SPV_ARM_core_builtins
system_value("core_count_arm", 1, bit_sizes=[32])
system_value("core_max_id_arm", 1, bit_sizes=[32])
system_value("warp_id_arm", 1, bit_sizes=[32])
system_value("warp_max_id_arm", 1, bit_sizes=[32])
# R600 specific instrincs
#
# location where the tesselation data is stored in LDS
system_value("tcs_in_param_base_r600", 4)
system_value("tcs_out_param_base_r600", 4)
system_value("tcs_rel_patch_id_r600", 1)
system_value("tcs_tess_factor_base_r600", 1)
# load as many components as needed giving per-component addresses
intrinsic("load_local_shared_r600", src_comp=[0], dest_comp=0, indices = [], flags = [CAN_ELIMINATE])
store("local_shared_r600", [1], [WRITE_MASK])
store("tf_r600", [])
# these two definitions are aimed at r600 indirect per_vertex_input accesses
intrinsic("r600_indirect_vertex_at_index", dest_comp=1, src_comp=[1], flags=[CAN_ELIMINATE, CAN_REORDER])
load("r600_per_vertex_input", [1], [BASE, RANGE, COMPONENT, DEST_TYPE, IO_SEMANTICS], [CAN_ELIMINATE, CAN_REORDER])
# AMD GCN/RDNA specific intrinsics
# This barrier is a hint that prevents moving the instruction that computes
# src after this barrier. It's a constraint for the instruction scheduler.
# Otherwise it's identical to a move instruction.
# The VGPR version forces the src value to be stored in a VGPR, while the SGPR
# version enforces an SGPR.
intrinsic("optimization_barrier_vgpr_amd", dest_comp=0, src_comp=[0],
flags=[CAN_ELIMINATE])
intrinsic("optimization_barrier_sgpr_amd", dest_comp=0, src_comp=[0],
flags=[CAN_ELIMINATE])
# These are no-op intrinsics used as a simple source and user of SSA defs for testing.
intrinsic("unit_test_amd", src_comp=[0], indices=[BASE])
intrinsic("unit_test_uniform_amd", dest_comp=0, indices=[BASE])
intrinsic("unit_test_divergent_amd", dest_comp=0, indices=[BASE])
# Untyped buffer load/store instructions of arbitrary length.
# src[] = { descriptor, vector byte offset, scalar byte offset, index offset }
# The index offset is multiplied by the stride in the descriptor.
# The vector/scalar offsets are in bytes, BASE is a constant byte offset.
intrinsic("load_buffer_amd", src_comp=[4, 1, 1, 1], dest_comp=0, indices=[BASE, MEMORY_MODES, ACCESS, ALIGN_MUL, ALIGN_OFFSET], flags=[CAN_ELIMINATE])
# src[] = { store value, descriptor, vector byte offset, scalar byte offset, index offset }
intrinsic("store_buffer_amd", src_comp=[0, 4, 1, 1, 1], indices=[BASE, WRITE_MASK, MEMORY_MODES, ACCESS, ALIGN_MUL, ALIGN_OFFSET])
# Typed buffer load of arbitrary length, using a specified format.
# src[] = { descriptor, vector byte offset, scalar byte offset, index offset }
#
# The compiler backend is responsible for emitting correct HW instructions according to alignment, range etc.
# Users of this intrinsic must ensure that the first component being loaded is really the first component
# of the specified format, because range analysis assumes this.
# The size of the specified format also determines the memory range that this instruction is allowed to access.
#
# The index offset is multiplied by the stride in the descriptor, if any.
# The vector/scalar offsets are in bytes, BASE is a constant byte offset.
intrinsic("load_typed_buffer_amd", src_comp=[4, 1, 1, 1], dest_comp=0, indices=[BASE, MEMORY_MODES, ACCESS, FORMAT, ALIGN_MUL, ALIGN_OFFSET], flags=[CAN_ELIMINATE])
# src[] = { address, unsigned 32-bit offset }.
load("global_amd", [1, 1], indices=[BASE, ACCESS, ALIGN_MUL, ALIGN_OFFSET], flags=[CAN_ELIMINATE])
# src[] = { value, address, unsigned 32-bit offset }.
store("global_amd", [1, 1], indices=[BASE, ACCESS, ALIGN_MUL, ALIGN_OFFSET, WRITE_MASK])
# Same as shared_atomic_add, but with GDS. src[] = {store_val, gds_addr, m0}
intrinsic("gds_atomic_add_amd", src_comp=[1, 1, 1], dest_comp=1, indices=[BASE])
# Optimized shared_atomic_add (1/-1) with constant address
# returning the uniform pre-op value for all invocations.
intrinsic("shared_append_amd", src_comp=[], dest_comp=1, bit_sizes=[32], indices=[BASE])
intrinsic("shared_consume_amd", src_comp=[], dest_comp=1, bit_sizes=[32], indices=[BASE])
# src[] = { sample_id, num_samples }
intrinsic("load_sample_positions_amd", src_comp=[1, 1], dest_comp=2, flags=[CAN_ELIMINATE, CAN_REORDER])
# Descriptor where TCS outputs are stored for TES
system_value("ring_tess_offchip_amd", 4)
system_value("ring_tess_offchip_offset_amd", 1)
# Descriptor where TCS outputs are stored for the HW tessellator
system_value("ring_tess_factors_amd", 4)
system_value("ring_tess_factors_offset_amd", 1)
# Descriptor where ES outputs are stored for GS to read on GFX6-8
system_value("ring_esgs_amd", 4)
system_value("ring_es2gs_offset_amd", 1)
# Address of the task shader draw ring (used for VARYING_SLOT_TASK_COUNT)
system_value("ring_task_draw_amd", 4)
# Address of the task shader payload ring (used for all other outputs)
system_value("ring_task_payload_amd", 4)
# Address of the mesh shader scratch ring (used for excess mesh shader outputs)
system_value("ring_mesh_scratch_amd", 4)
system_value("ring_mesh_scratch_offset_amd", 1)
# Pointer into the draw and payload rings
system_value("task_ring_entry_amd", 1)
# Descriptor where NGG attributes are stored on GFX11.
system_value("ring_attr_amd", 4)
system_value("ring_attr_offset_amd", 1)
# Load provoking vertex info
system_value("provoking_vtx_amd", 1)
# Load rasterization primitive
system_value("rasterization_primitive_amd", 1);
# Number of patches processed by each TCS workgroup
system_value("tcs_num_patches_amd", 1)
# The stride of 1 TCS per-vertex output in memory / 256
system_value("tcs_mem_attrib_stride", 1)
# Whether TCS should store tessellation level outputs for TES to read
system_value("tcs_tess_levels_to_tes_amd", dest_comp=1, bit_sizes=[1])
# Tessellation primitive mode for TCS
system_value("tcs_primitive_mode_amd", 1)
# Relative tessellation patch ID within the current workgroup
system_value("tess_rel_patch_id_amd", 1)
# Vertex offsets used for GS per-vertex inputs
system_value("gs_vertex_offset_amd", 1, [BASE])
# Number of rasterization samples
system_value("rasterization_samples_amd", 1)
# Descriptor where GS outputs are stored for GS copy shader to read on GFX6-9
system_value("ring_gsvs_amd", 4, indices=[STREAM_ID])
# Write offset in gsvs ring for legacy GS shader
system_value("ring_gs2vs_offset_amd", 1)
# Streamout configuration
system_value("streamout_config_amd", 1)
# Position to write within the streamout buffers
system_value("streamout_write_index_amd", 1)
# Offset to write within a streamout buffer
system_value("streamout_offset_amd", 1, indices=[BASE])
# AMD merged shader intrinsics
# Whether the current invocation index in the subgroup is less than the source. The source must be
# subgroup uniform and the 8 bits starting at the base bit must be less than or equal to the wave size.
intrinsic("is_subgroup_invocation_lt_amd", src_comp=[1], dest_comp=1, bit_sizes=[1], indices=[BASE],
flags=[CAN_ELIMINATE, CAN_REORDER])
# AMD NGG intrinsics
# Number of initial input vertices in the current workgroup.
system_value("workgroup_num_input_vertices_amd", 1)
# Number of initial input primitives in the current workgroup.
system_value("workgroup_num_input_primitives_amd", 1)
# For NGG passthrough mode only. Pre-packed argument for export_primitive_amd.
system_value("packed_passthrough_primitive_amd", 1)
# Whether NGG should execute shader query for pipeline statistics.
system_value("pipeline_stat_query_enabled_amd", dest_comp=1, bit_sizes=[1])
# Whether NGG should execute shader query for primitive generated.
system_value("prim_gen_query_enabled_amd", dest_comp=1, bit_sizes=[1])
# Whether NGG should execute shader query for primitive streamouted.
system_value("prim_xfb_query_enabled_amd", dest_comp=1, bit_sizes=[1])
# 64-bit memory address to struct {uint32_t ordered_id; uint32_t dwords_written;}[4]
system_value("xfb_state_address_gfx12_amd", dest_comp=1, bit_sizes=[64])
# Merged wave info. Bits 0-7 are the ES thread count, 8-15 are the GS thread count, 16-24 is the
# GS Wave ID, 24-27 is the wave index in the workgroup, and 28-31 is the workgroup size in waves.
system_value("merged_wave_info_amd", dest_comp=1)
# Global ID for GS waves on GCN/RDNA legacy GS.
system_value("gs_wave_id_amd", dest_comp=1)
# Whether the shader should clamp vertex color outputs to [0, 1].
system_value("clamp_vertex_color_amd", dest_comp=1, bit_sizes=[1])
# Whether the shader should cull front facing triangles.
intrinsic("load_cull_front_face_enabled_amd", dest_comp=1, bit_sizes=[1], flags=[CAN_ELIMINATE])
# Whether the shader should cull back facing triangles.
intrinsic("load_cull_back_face_enabled_amd", dest_comp=1, bit_sizes=[1], flags=[CAN_ELIMINATE])
# True if face culling should use CCW (false if CW).
intrinsic("load_cull_ccw_amd", dest_comp=1, bit_sizes=[1], flags=[CAN_ELIMINATE])
# Whether the shader should cull small triangles that are not visible in a pixel.
intrinsic("load_cull_small_triangles_enabled_amd", dest_comp=1, bit_sizes=[1], flags=[CAN_ELIMINATE])
# Whether the shader should cull small lines that are not visible in a pixel.
intrinsic("load_cull_small_lines_enabled_amd", dest_comp=1, bit_sizes=[1], flags=[CAN_ELIMINATE])
# Whether any culling setting is enabled in the shader.
intrinsic("load_cull_any_enabled_amd", dest_comp=1, bit_sizes=[1], flags=[CAN_ELIMINATE])
# Small triangle culling precision
intrinsic("load_cull_small_triangle_precision_amd", dest_comp=1, bit_sizes=[32], flags=[CAN_ELIMINATE, CAN_REORDER])
# Small line culling precision
intrinsic("load_cull_small_line_precision_amd", dest_comp=1, bit_sizes=[32], flags=[CAN_ELIMINATE, CAN_REORDER])
# Initial edge flags in a Vertex Shader, packed into the format the HW needs for primitive export.
intrinsic("load_initial_edgeflags_amd", src_comp=[], dest_comp=1, bit_sizes=[32], indices=[])
# Corresponds to s_sendmsg in the GCN/RDNA ISA, src[] = { m0_content }, BASE = imm
intrinsic("sendmsg_amd", src_comp=[1], indices=[BASE])
# Overwrites VS input registers, for use with vertex compaction after culling. src = {vertex_id, instance_id}.
intrinsic("overwrite_vs_arguments_amd", src_comp=[1, 1], indices=[])
# Overwrites TES input registers, for use with vertex compaction after culling. src = {tes_u, tes_v, rel_patch_id, patch_id}.
intrinsic("overwrite_tes_arguments_amd", src_comp=[1, 1, 1, 1], indices=[])
# The address of the sbt descriptors.
system_value("sbt_base_amd", 1, bit_sizes=[64])
# 1. HW descriptor
# 2. BVH node(64-bit pointer as 2x32 ...)
# 3. ray extent
# 4. ray origin
# 5. ray direction
# 6. inverse ray direction (componentwise 1.0/ray direction)
intrinsic("bvh64_intersect_ray_amd", [4, 2, 1, 3, 3, 3], 4, flags=[CAN_ELIMINATE, CAN_REORDER])
# 1. HW descriptor
# 2. BVH base
# 3. instance cull mask
# 4. ray extent
# 5. ray origin
# 6. ray direction
# 7. node ID
#
# dst:
# | component | box node | instance node | triangle node | procedural node |
# |-----------|-------------|----------------------|-----------------------------------|-----------------------------------|
# | 0 | child_id[0] | | t[0] | |
# | 1 | child_id[1] | | u[0] | |
# | 2 | child_id[2] | blas_addr_lo | v[0] | |
# | 3 | child_id[3] | blas_addr_hi | primitive_index_hit_kind[0] | primitive_index |
# | 4 | child_id[4] | | t[1] | |
# | 5 | child_id[5] | | u[1] | |
# | 6 | child_id[6] | user_data | v[1] | |
# | 7 | child_id[7] | next_node_ids | primitive_index_hit_kind[1] | |
# | 8 | | | geometry_index_navigation_bits[0] | geometry_index_navigation_bits[0] |
# | 9 | | | geometry_index_navigation_bits[1] | geometry_index_navigation_bits[1] |
# | [10,12] | | object_ray_origin | | |
# | [13,15] | | object_ray_direction | | |
#
intrinsic("bvh8_intersect_ray_amd", [4, 2, 1, 1, 3, 3, 1], 16, flags=[CAN_ELIMINATE, CAN_REORDER])
# operands:
# 1. stack address
# 2. previous node pointer
# 3. BVH node pointers
# returns:
# component 0: next stack address
# component 1: next node pointer
intrinsic("bvh_stack_rtn_amd", [1, 1, 0], 2, indices=[STACK_SIZE])
# Return of a callable in raytracing pipelines
intrinsic("rt_return_amd")
# offset into scratch for the input callable data in a raytracing pipeline.
system_value("rt_arg_scratch_offset_amd", 1)
# Whether to call the anyhit shader for an intersection in an intersection shader.
system_value("intersection_opaque_amd", 1, bit_sizes=[1])
# pointer to the next resume shader
system_value("resume_shader_address_amd", 1, bit_sizes=[64], indices=[CALL_IDX])
# Ray Tracing Traversal inputs
system_value("sbt_offset_amd", 1)
system_value("sbt_stride_amd", 1)
system_value("accel_struct_amd", 1, bit_sizes=[64])
system_value("cull_mask_and_flags_amd", 1)
# 0. SBT Index
# 1. Ray Tmax
# 2. Primitive Addr
# 3. Primitive Id
# 4. Instance Addr
# 5. Geometry Id and Flags
# 6. Hit Kind
intrinsic("execute_closest_hit_amd", src_comp=[1, 1, 1, 1, 1, 1, 1])
# 0. Ray Tmax
intrinsic("execute_miss_amd", src_comp=[1])
# Used for saving and restoring hit attribute variables.
# BASE=dword index
intrinsic("load_hit_attrib_amd", dest_comp=1, bit_sizes=[32], indices=[BASE])
intrinsic("store_hit_attrib_amd", src_comp=[1], indices=[BASE])
# Load forced VRS rates.
intrinsic("load_force_vrs_rates_amd", dest_comp=1, bit_sizes=[32], flags=[CAN_ELIMINATE, CAN_REORDER])
intrinsic("load_scalar_arg_amd", dest_comp=0, bit_sizes=[32],
indices=[BASE, ARG_UPPER_BOUND_U32_AMD],
flags=[CAN_ELIMINATE, CAN_REORDER])
intrinsic("load_vector_arg_amd", dest_comp=0, bit_sizes=[32],
indices=[BASE, ARG_UPPER_BOUND_U32_AMD],
flags=[CAN_ELIMINATE, CAN_REORDER])
store("scalar_arg_amd", [], [BASE])
store("vector_arg_amd", [], [BASE])
# src[] = { offset }.
intrinsic("load_shared2_amd", [1], dest_comp=2, indices=[ACCESS, OFFSET0, OFFSET1, ST64], flags=[CAN_ELIMINATE])
# src[] = { value, offset }.
intrinsic("store_shared2_amd", [2, 1], indices=[ACCESS, OFFSET0, OFFSET1, ST64])
# Vertex stride in LS-HS buffer
system_value("lshs_vertex_stride_amd", 1)
# Vertex stride in ES-GS buffer
system_value("esgs_vertex_stride_amd", 1)
# Per patch data offset in HS VRAM output buffer
system_value("hs_out_patch_data_offset_amd", 1)
# line_width * 0.5 / abs(viewport_scale[2])
system_value("clip_half_line_width_amd", 2)
# Number of vertices in a primitive
system_value("num_vertices_per_primitive_amd", 1)
# Load streamout buffer desc
# BASE = buffer index
intrinsic("load_streamout_buffer_amd", dest_comp=4, indices=[BASE], bit_sizes=[32], flags=[CAN_ELIMINATE, CAN_REORDER])
# Polygon stipple buffer descriptor
system_value("polygon_stipple_buffer_amd", 4)
# An ID for each workgroup ordered by primitve sequence
system_value("ordered_id_amd", 1)
# Add src1 to global streamout buffer offsets in the specified order.
# Only 1 lane must be active.
# src[] = { ordered_id, counter }
# WRITE_MASK = mask for counter channel to update
intrinsic("ordered_xfb_counter_add_gfx11_amd", dest_comp=0, src_comp=[1, 0], indices=[WRITE_MASK], bit_sizes=[32])
# Execute the atomic ordered add loop. This does what ds_ordered_count did in previous generations.
# This is implemented with inline assembly to get the most optimal code.
#
# Inputs:
# exec = one lane per counter (use nir_push_if, streamout should always enable 4 lanes)
# src[0] = 64-bit SGPR atomic base address (streamout should use nir_load_xfb_state_address_gfx12_amd)
# src[1] = 32-bit VGPR voffset (streamout should set local_invocation_index * 8)
# src[2] = 32-bit SGPR ordered_id (use nir_load_ordered_id_amd for streamout, compute shaders
# should generated it manually)
# src[3] = 64-bit VGPR atomic src, use pack_64_2x32_split(ordered_id, value), streamout should do:
# pack_64_2x32_split(ordered_id, "dwords written per workgroup" for each buffer)
#
# dst = 32-bit VGPR of the previous value of 32-bit value in memory, returned for all enabled lanes
# Example - streamout: It's used to add dwords_written[] to global streamout offsets.
# * Exactly 4 lanes must be active, one for each buffer binding.
# * Disabled buffers must set dwords_written=0 for their lane, but the lane
# must be enabled.
#
intrinsic("ordered_add_loop_gfx12_amd", dest_comp=1, src_comp=[1, 1, 1, 1], bit_sizes=[32])
# Subtract from global streamout buffer offsets. Used to fix up the offsets
# when we overflow streamout buffers.
# src[] = { offsets }
# WRITE_MASK = mask of offsets to subtract
intrinsic("xfb_counter_sub_gfx11_amd", src_comp=[0], indices=[WRITE_MASK], bit_sizes=[32])
# Provoking vertex index in a primitive
system_value("provoking_vtx_in_prim_amd", 1)
# Atomically add current wave's primitive count to query result
# * GS emitted primitive is primitive emitted by any GS stream
# * generated primitive is primitive that has been produced for that stream by VS/TES/GS
# * streamout primitve is primitve that has been written to xfb buffer, may be different
# than generated primitive when xfb buffer is too small to hold more primitives
# src[] = { primitive_count }.
intrinsic("atomic_add_gs_emit_prim_count_amd", [1])
intrinsic("atomic_add_gen_prim_count_amd", [1], indices=[STREAM_ID])
intrinsic("atomic_add_xfb_prim_count_amd", [1], indices=[STREAM_ID])
# Atomically add current shader's invocation count to query result
# src[] = { invocation_count }.
intrinsic("atomic_add_shader_invocation_count_amd", [1])
# LDS offset for NGG GS shader vertex emit
system_value("lds_ngg_gs_out_vertex_base_amd", 1)
# AMD GPU shader output export instruction
# src[] = { export_value, row }
# BASE = export target
# FLAGS = AC_EXP_FLAG_*
intrinsic("export_amd", [0], indices=[BASE, WRITE_MASK, FLAGS])
intrinsic("export_row_amd", [0, 1], indices=[BASE, WRITE_MASK, FLAGS])
# Export dual source blend outputs with swizzle operation
# src[] = { mrt0, mrt1 }
intrinsic("export_dual_src_blend_amd", [0, 0], indices=[WRITE_MASK])
# Alpha test reference value
system_value("alpha_reference_amd", 1)
# Whether to enable barycentric optimization
system_value("barycentric_optimize_amd", dest_comp=1, bit_sizes=[1])
# Copy the input into a register which will remain valid for entire quads, even in control flow.
# This should only be used directly for texture sources.
intrinsic("strict_wqm_coord_amd", src_comp=[0], dest_comp=0, bit_sizes=[32], indices=[BASE],
flags=[CAN_ELIMINATE])
intrinsic("cmat_muladd_amd", src_comp=[-1, -1, 0], dest_comp=0, bit_sizes=src2,
indices=[SATURATE, NEG_LO_AMD, NEG_HI_AMD, SRC_BASE_TYPE, SRC_BASE_TYPE2], flags=[CAN_ELIMINATE])
# Get the debug log buffer descriptor.
intrinsic("load_debug_log_desc_amd", bit_sizes=[32], dest_comp=4, flags=[CAN_ELIMINATE, CAN_REORDER])
# s_sleep BASE (sleep for 64*BASE cycles). BASE must be in [0, 0xffff].
# BASE=0 is valid but isn't useful.
# GFX12+: If BASE & 0x8000, sleep forever (until wakeup, trap, or kill).
intrinsic("sleep_amd", indices=[BASE])
# s_nop BASE (sleep for BASE+1 cycles, BASE must be in [0, 15]).
intrinsic("nop_amd", indices=[BASE])
# Return the FMASK descriptor of color buffer 0.
system_value("fbfetch_image_fmask_desc_amd", 8)
# Return the image descriptor of color buffer 0.
system_value("fbfetch_image_desc_amd", 8)
system_value("ray_tracing_stack_base_lvp", 1)
system_value("shader_call_data_offset_lvp", 1)
intrinsic("load_const_buf_base_addr_lvp", src_comp=[1], bit_sizes=[64], dest_comp=1, flags=[CAN_ELIMINATE, CAN_REORDER])
# Broadcom-specific instrinc for tile buffer color reads.
#
# The hardware requires that we read the samples and components of a pixel
# in order, so we cannot eliminate or remove any loads in a sequence.
#
# src[] = { render_target }
# BASE = sample index
load("tlb_color_brcm", [1], [BASE, COMPONENT], [])
# V3D-specific instrinc for per-sample tile buffer color writes.
#
# The driver backend needs to identify per-sample color writes and emit
# specific code for them.
#
# src[] = { value, render_target }
# BASE = sample index
store("tlb_sample_color_v3d", [1], [BASE, COMPONENT, SRC_TYPE], [])
# V3D-specific intrinsic to load the number of layers attached to
# the target framebuffer
intrinsic("load_fb_layers_v3d", dest_comp=1, flags=[CAN_ELIMINATE, CAN_REORDER])
# V3D-specific intrinsic to load W coordinate from the fragment shader payload
intrinsic("load_fep_w_v3d", dest_comp=1, flags=[CAN_ELIMINATE, CAN_REORDER])
# Active invocation index within the subgroup.
# Equivalent to popcount(ballot(true) & ((1 << subgroup_invocation) - 1))
intrinsic("load_active_subgroup_invocation_agx", dest_comp=1, flags=[CAN_ELIMINATE])
# Total active invocations within the subgroup.
# Equivalent to popcount(ballot(true))
intrinsic("load_active_subgroup_count_agx", dest_comp=1, flags=[CAN_ELIMINATE])
# Like ballot() but only within a quad.
intrinsic("quad_ballot_agx", src_comp=[1], dest_comp=1, flags=[CAN_ELIMINATE])
# With [0, 1] clipping, no transform is needed on the output z' = z. But with [-1,
# 1] clipping, we need to transform z' = (z + w) / 2. We express both cases as a
# lerp between z and w, where this is the lerp coefficient: 0 for [0, 1] and 0.5
# for [-1, 1].
system_value("clip_z_coeff_agx", 1)
# True if drawing triangle fans with first vertex provoking, false otherwise.
# This affects flatshading, which is defined weirdly for fans with first.
system_value("is_first_fan_agx", 1, bit_sizes=[1])
# Root descriptor address
system_value("root_agx", 1, bit_sizes=[64])
# Load a bindless sampler handle mapping a binding table sampler.
intrinsic("load_sampler_handle_agx", [1], 1, [],
flags=[CAN_ELIMINATE, CAN_REORDER],
bit_sizes=[16])
# Load a bindless texture handle mapping a binding table texture.
intrinsic("load_texture_handle_agx", [1], 1, [],
flags=[CAN_ELIMINATE, CAN_REORDER],
bit_sizes=[32])
# Load descriptor set address
intrinsic("load_descriptor_set_agx", [], 1, [DESC_SET],
flags=[CAN_ELIMINATE, CAN_REORDER],
bit_sizes=[64])
# Given a bindless texture handle, load the address of the texture descriptor
# described by that. This allows inspecting the descriptor from the shader. This
# does not actually load the content of the descriptor, only the content of the
# handle (which is the address of the descriptor).
intrinsic("load_from_texture_handle_agx", [1], 1, [],
flags=[CAN_ELIMINATE, CAN_REORDER],
bit_sizes=[64])
# Load the coefficient register corresponding to a given fragment shader input.
# Coefficient registers are vec3s that are dotted with <x, y, 1> to interpolate
# the input, where x and y are relative to the 32x32 supertile.
intrinsic("load_coefficients_agx", [1],
bit_sizes = [32],
dest_comp = 3,
indices=[COMPONENT, IO_SEMANTICS, INTERP_MODE],
flags=[CAN_ELIMINATE, CAN_REORDER])
# src[] = { value, index }
# Store a vertex shader output to the Unified Vertex Store (UVS). Indexed by UVS
# index, which must be assigned by the driver based on the linked fragment
# shader's interpolation qualifiers. This corresponds to the native instruction.
store("uvs_agx", [1], [], [CAN_REORDER])
# Driver intrinsic to map a location to a UVS index. This is generated when
# lowering store_output to store_uvs_agx, and must be lowered by the driver.
intrinsic("load_uvs_index_agx", dest_comp = 1, bit_sizes=[16],
indices=[IO_SEMANTICS], flags=[CAN_ELIMINATE, CAN_REORDER])
# Load/store a pixel in local memory. This operation is formatted, with
# conversion between the specified format and the implied register format of the
# source/destination (for store/loads respectively). This mostly matters for
# converting between floating-point registers and normalized memory formats.
#
# The format is the pipe_format of the local memory (the source), see
# ail for the supported list.
#
# Logically, this loads/stores a single sample. The sample to load is
# specified by the bitfield sample mask source. However, for stores multiple
# bits of the sample mask may be set, which will replicate the value. For
# pixel rate shading, use 0xFF as the mask to store to all samples regardless of
# the sample count.
#
# All calculations are relative to an immediate byte offset into local
# memory, which acts relative to the start of the sample. These instructions
# logically access:
#
# (((((y * tile_width) + x) * nr_samples) + sample) * sample_stride) + offset
#
# src[] = { sample mask }
# base = offset
load("local_pixel_agx", [1], [BASE, FORMAT], [CAN_REORDER, CAN_ELIMINATE])
# src[] = { value, sample mask, coordinates }
# base = offset
store("local_pixel_agx", [1, -1], [BASE, WRITE_MASK, FORMAT, EXPLICIT_COORD], [CAN_REORDER])
# Combined depth/stencil emit, applying to a mask of samples. base indicates
# which to write (1 = depth, 2 = stencil, 3 = both).
#
# src[] = { sample mask, depth, stencil }
intrinsic("store_zs_agx", [1, 1, 1], indices=[BASE], flags=[])
# Store a block from local memory into a bound image. Used to write out render
# targets within the end-of-tile shader, although it is valid in general compute
# kernels.
#
# The format is the pipe_format of the local memory (the source), see
# ail for the supported list. The image format is
# specified in the PBE descriptor.
#
# The image dimension is used to distinguish multisampled images from
# non-multisampled images. It must be 2D or MS.
#
# extra src[] = { logical offset within shared memory, coordinates/layer }
image("store_block_agx", [1, -1], extra_indices=[EXPLICIT_COORD])
# Formatted load/store. The format is the pipe_format in memory (see ail for the
# supported list). This accesses:
#
# address + extend(index) << (format shift + shift)
#
# The nir_intrinsic_base() index encodes the shift. The sign_extend index
# determines whether sign- or zero-extension is used for the index.
#
# All loads and stores on AGX uses these hardware instructions, so while these are
# logically load_global_agx/load_global_constant_agx/store_global_agx, the
# _global is omitted as it adds nothing.
#
# src[] = { address, index }.
load("agx", [1, 1], [ACCESS, BASE, FORMAT, SIGN_EXTEND], [CAN_ELIMINATE])
load("constant_agx", [1, 1], [ACCESS, BASE, FORMAT, SIGN_EXTEND],
[CAN_ELIMINATE, CAN_REORDER])
# src[] = { value, address, index }.
store("agx", [1, 1], [ACCESS, BASE, FORMAT, SIGN_EXTEND])
# Logical complement of load_front_face, mapping to an AGX system value
system_value("back_face_agx", 1, bit_sizes=[1, 32])
# Load the base address/stride of an indexed vertex attribute (for lowering).
intrinsic("load_vbo_base_agx", src_comp=[1], dest_comp=1, bit_sizes=[64],
flags=[CAN_ELIMINATE, CAN_REORDER])
intrinsic("load_vbo_stride_agx", src_comp=[1], dest_comp=1, bit_sizes=[32],
flags=[CAN_ELIMINATE, CAN_REORDER])
# When vertex robustness is enabled, loads the maximum valid attribute index for
# a given attribute. This is unsigned: the driver ensures that at least one
# vertex is always valid to load, directing loads to a zero sink if necessary.
intrinsic("load_attrib_clamp_agx", src_comp=[1], dest_comp=1,
bit_sizes=[32], flags=[CAN_ELIMINATE, CAN_REORDER])
# Load a driver-internal system value from a given system value set at a given
# binding within the set. This is used for correctness when lowering things like
# UBOs with merged shaders.
#
# The FLAGS are used internally for loading the index of the uniform itself,
# rather than the contents, used for lowering bindless handles (which encode
# uniform indices as immediates in the NIR for technical reasons).
load("sysval_agx", [], [DESC_SET, BINDING, FLAGS], [CAN_REORDER, CAN_ELIMINATE])
# Write out a sample mask for a targeted subset of samples, specified in the two
# masks. Maps to the corresponding AGX instruction, the actual workings are
# documented elsewhere as they are too complicated for this comment.
intrinsic("sample_mask_agx", src_comp=[1, 1])
# For a given row of the polygon stipple given as an integer source in [0, 31],
# load the 32-bit stipple pattern for that row.
intrinsic("load_polygon_stipple_agx", src_comp=[1], dest_comp=1, bit_sizes=[32],
flags=[CAN_REORDER, CAN_ELIMINATE])
# The fixed-function sample mask specified in the API (e.g. glSampleMask)
system_value("api_sample_mask_agx", 1, bit_sizes=[16])
# Bit mask of samples currently being shaded. For API-level sample shading, this
# will usually equal (1 << sample_id). Multiple bits can be set when sample
# shading is only enabled due to framebuffer fetch, and the framebuffer has
# multiple samples with the same value.
#
# Used as a loop variable with dynamic sample shading.
system_value("active_samples_agx", 1, bit_sizes=[16])
# Loads the sample position array as fixed point packed into a 32-bit word
system_value("sample_positions_agx", 1, bit_sizes=[32])
# In a non-monolithic fragment shader part, returns whether this shader part is
# responsible for Z/S testing after its final discard. ~0/0 boolean.
system_value("shader_part_tests_zs_agx", 1, bit_sizes=[16])
# Returns whether the API depth test is NEVER. We emulate this in shader when
# fragment side effects are used to ensure the fragment shader executes.
system_value("depth_never_agx", 1, bit_sizes=[16])
# In a fragment shader, returns the log2 of the number of samples in the
# tilebuffer. This is the unprocessed value written in the corresponding USC
# word. Used to determine whether sample mask writes have any effect when sample
# count is dynamic.
system_value("samples_log2_agx", 1, bit_sizes=[16])
# Loads the fixed-function glPointSize() value, or zero if the
# shader-supplied value should be used.
system_value("fixed_point_size_agx", 1, bit_sizes=[32])
# Bit mask of TEX locations that are replaced with point sprites
system_value("tex_sprite_mask_agx", 1, bit_sizes=[16])
# Image loads go through the texture cache, which is not coherent with the PBE
# or memory access, so fencing is necessary for writes to become visible.
# Make writes via main memory (image atomics) visible for texturing.
barrier("fence_pbe_to_tex_agx")
# Make writes from global memory instructions (atomics) visible for texturing.
barrier("fence_mem_to_tex_agx")
# Variant of fence_pbe_to_tex_agx specialized to stores in pixel shaders that
# act like render target writes, in conjunction with fragment interlock.
barrier("fence_pbe_to_tex_pixel_agx")
# Unknown fence used in the helper program on exit.
barrier("fence_helper_exit_agx")
# Helper shader intrinsics
# src[] = { value }.
intrinsic("doorbell_agx", src_comp=[1])
# src[] = { index, stack_address }.
intrinsic("stack_map_agx", src_comp=[1, 1])
# src[] = { index }.
# dst[] = { stack_address }.
intrinsic("stack_unmap_agx", src_comp=[1], dest_comp=1, bit_sizes=[32])
# dst[] = { GPU core ID }.
system_value("core_id", 1, bit_sizes=[32])
# dst[] = { Helper operation type }.
load("helper_op_id_agx", [], [], [CAN_ELIMINATE])
# dst[] = { Helper argument low 32 bits }.
load("helper_arg_lo_agx", [], [], [CAN_ELIMINATE])
# dst[] = { Helper argument high 32 bits }.
load("helper_arg_hi_agx", [], [], [CAN_ELIMINATE])
# Export a vector. At the end of the shader part, the source is copied to the
# indexed GPRs starting at BASE. Exports must not overlap within a shader part.
# Must only appear in the last block of the shader part.
intrinsic("export_agx", [0], indices=[BASE])
# Load an exported vector at the beginning of the shader part from GPRs starting
# at BASE. Must only appear in the first block of the shader part.
load("exported_agx", [], [BASE], [CAN_ELIMINATE])
# AGX-specific bindless texture/image handle specifier. Similar to
# vulkan_resource_index. The "descriptor set" here is the heap uniform. The
# source is the offset in bytes into the heap.
intrinsic("bindless_image_agx", [1], dest_comp=1, bit_sizes=[32],
indices=[DESC_SET], flags=[CAN_ELIMINATE, CAN_REORDER])
# AGX-specific bindless sampler handle specifier. Takes both a byte offset into the
# descriptor set (first source) and an index into the global heap (second
# source) to allow optimal pushing heuristics.
intrinsic("bindless_sampler_agx", [1, 1], dest_comp=1, bit_sizes=[16],
indices=[DESC_SET], flags=[CAN_ELIMINATE, CAN_REORDER])
# Intel-specific query for loading from the isl_image_param struct passed
# into the shader as a uniform. The variable is a deref to the image
# variable. The const index specifies which of the six parameters to load.
intrinsic("image_deref_load_param_intel", src_comp=[1], dest_comp=0,
indices=[BASE], flags=[CAN_ELIMINATE, CAN_REORDER])
image("load_raw_intel", src_comp=[1], dest_comp=0,
flags=[CAN_ELIMINATE])
image("store_raw_intel", src_comp=[1, 0])
# Maximum number of polygons processed in the fragment shader
system_value("max_polygon_intel", 1, bit_sizes=[32])
# Read the attribute thread payload at a given offset
# src[] = { offset }
intrinsic("read_attribute_payload_intel", dest_comp=1, bit_sizes=[32],
src_comp=[1],
flags=[CAN_ELIMINATE, CAN_REORDER])
# Populate the per-primitive payload at an offset
# src[] = { value, offset }
intrinsic("store_per_primitive_payload_intel", src_comp=[-1], indices=[BASE, COMPONENT])
# Number of data items being operated on for a SIMD program.
system_value("simd_width_intel", 1)
# Load a relocatable 32-bit value
intrinsic("load_reloc_const_intel", dest_comp=1, bit_sizes=[32],
indices=[PARAM_IDX, BASE], flags=[CAN_ELIMINATE, CAN_REORDER])
# 1 component 32bit surface index that can be used for bindless or BTI heaps
#
# This intrinsic is used to figure out what UBOs accesses could be promoted to
# push constants. To allow promoting a load_ubo to push constants, we need to
# know that the surface & offset are constants. If we want to use the bindless
# heap for this we have to build the surface index with a pushed constant for
# the descriptor set which prevents us from doing a nir_src_is_const() check.
# With this intrinsic, we can just check the surface_index src with
# nir_src_is_const() and ignore set_offset.
#
# src[] = { set_offset, surface_index, array_index, bindless_base_offset }
intrinsic("resource_intel", dest_comp=1, bit_sizes=[32],
src_comp=[1, 1, 1, 1],
indices=[DESC_SET, BINDING, RESOURCE_ACCESS_INTEL, RESOURCE_BLOCK_INTEL],
flags=[CAN_ELIMINATE, CAN_REORDER])
# OpSubgroupBlockReadINTEL and OpSubgroupBlockWriteINTEL from SPV_INTEL_subgroups.
intrinsic("load_deref_block_intel", dest_comp=0, src_comp=[-1],
indices=[ACCESS], flags=[CAN_ELIMINATE])
intrinsic("store_deref_block_intel", src_comp=[-1, 0], indices=[WRITE_MASK, ACCESS])
# Special load_ssbo intrinsic with an additional BASE value for Xe2+ offsets
# src[] = { buffer_index, offset }.
load("ssbo_intel", [-1, 1], [ACCESS, BASE, ALIGN_MUL, ALIGN_OFFSET], [CAN_ELIMINATE])
# Special store_ssbo intrinsic with an additional BASE value for Xe2+ offsets
# src[] = { value, buffer_index, offset }
store("ssbo_intel", [-1, 1], [WRITE_MASK, ACCESS, BASE, ALIGN_MUL, ALIGN_OFFSET])
# src[] = { address }.
load("global_block_intel", [1], [ACCESS, ALIGN_MUL, ALIGN_OFFSET], [CAN_ELIMINATE])
# src[] = { buffer_index, offset }.
load("ssbo_block_intel", [-1, 1], [ACCESS, ALIGN_MUL, ALIGN_OFFSET], [CAN_ELIMINATE])
# src[] = { offset }.
load("shared_block_intel", [1], [BASE, ALIGN_MUL, ALIGN_OFFSET], [CAN_ELIMINATE])
# src[] = { value, address }.
store("global_block_intel", [1], [WRITE_MASK, ACCESS, ALIGN_MUL, ALIGN_OFFSET])
# src[] = { value, block_index, offset }
store("ssbo_block_intel", [-1, 1], [WRITE_MASK, ACCESS, ALIGN_MUL, ALIGN_OFFSET])
# src[] = { value, offset }.
store("shared_block_intel", [1], [BASE, WRITE_MASK, ALIGN_MUL, ALIGN_OFFSET])
# src[] = { address }.
load("global_constant_uniform_block_intel", [1],
[ACCESS, ALIGN_MUL, ALIGN_OFFSET], [CAN_ELIMINATE, CAN_REORDER])
# Similar to load_global_const_block_intel but for UBOs
# offset should be uniform
# src[] = { buffer_index, offset }.
load("ubo_uniform_block_intel", [-1, 1],
[ACCESS, ALIGN_MUL, ALIGN_OFFSET, BASE, RANGE], [CAN_ELIMINATE, CAN_REORDER])
# Similar to load_global_const_block_intel but for SSBOs
# offset should be uniform
# src[] = { buffer_index, offset }.
load("ssbo_uniform_block_intel", [-1, 1], [ACCESS, ALIGN_MUL, ALIGN_OFFSET, BASE], [CAN_ELIMINATE])
# Similar to load_global_const_block_intel but for shared memory
# src[] = { offset }.
load("shared_uniform_block_intel", [1], [BASE, ALIGN_MUL, ALIGN_OFFSET], [CAN_ELIMINATE])
# Inline register delivery (available on Gfx12.5+ for CS/Mesh/Task stages)
intrinsic("load_inline_data_intel", [], dest_comp=0,
indices=[BASE],
flags=[CAN_ELIMINATE, CAN_REORDER])
# Dynamic tesselation parameters (see intel_tess_config).
system_value("tess_config_intel", 1)
# Dynamic fragment shader parameters (see intel_msaa_flags) .
system_value("fs_msaa_intel", 1)
# Per primitive remapping table offset.
system_value("per_primitive_remap_intel", 1)
# Intrinsics for Intel bindless thread dispatch
# BASE=brw_topoloy_id
system_value("topology_id_intel", 1, indices=[BASE])
system_value("btd_stack_id_intel", 1)
system_value("btd_global_arg_addr_intel", 1, bit_sizes=[64])
system_value("btd_local_arg_addr_intel", 1, bit_sizes=[64])
system_value("btd_resume_sbt_addr_intel", 1, bit_sizes=[64])
# src[] = { global_arg_addr, btd_record }
intrinsic("btd_spawn_intel", src_comp=[1, 1])
# RANGE=stack_size
intrinsic("btd_stack_push_intel", indices=[STACK_SIZE])
# src[] = { }
intrinsic("btd_retire_intel")
# Intel-specific ray-tracing intrinsic
# src[] = { globals, level, operation } SYNCHRONOUS=synchronous
intrinsic("trace_ray_intel", src_comp=[1, 1, 1], indices=[SYNCHRONOUS])
# System values used for ray-tracing on Intel
system_value("ray_base_mem_addr_intel", 1, bit_sizes=[64])
system_value("ray_hw_stack_size_intel", 1)
system_value("ray_sw_stack_size_intel", 1)
system_value("ray_num_dss_rt_stacks_intel", 1)
system_value("ray_hit_sbt_addr_intel", 1, bit_sizes=[64])
system_value("ray_hit_sbt_stride_intel", 1, bit_sizes=[16])
system_value("ray_miss_sbt_addr_intel", 1, bit_sizes=[64])
system_value("ray_miss_sbt_stride_intel", 1, bit_sizes=[16])
system_value("callable_sbt_addr_intel", 1, bit_sizes=[64])
system_value("callable_sbt_stride_intel", 1, bit_sizes=[16])
system_value("leaf_opaque_intel", 1, bit_sizes=[1])
system_value("leaf_procedural_intel", 1, bit_sizes=[1])
# Values :
# 0: AnyHit
# 1: ClosestHit
# 2: Miss
# 3: Intersection
system_value("btd_shader_type_intel", 1)
system_value("ray_query_global_intel", 1, bit_sizes=[64])
# Source 0: Accumulator matrix (type specified by DEST_TYPE)
# Source 1: A matrix (type specified by SRC_TYPE)
# Source 2: B matrix (type specified by SRC_TYPE)
#
# The matrix parameters are the slices owned by the invocation.
#
# The accumulator is source 0 because that is the source the intrinsic
# infrastructure in NIR uses to determine the number of components in the
# result.
#
# The number of components for the second and third sources is -1 to avoid
# validation of its value. Some supported configurations will have the
# component count of that matrix different than the others.
intrinsic("dpas_intel", dest_comp=0, src_comp=[0, -1, -1],
indices=[DEST_BASE_TYPE, SRC_BASE_TYPE, SATURATE, SYSTOLIC_DEPTH, REPEAT_COUNT],
flags=[CAN_ELIMINATE])
intrinsic("convert_cmat_intel", dest_comp=0, src_comp=[-1],
indices=[DST_CMAT_DESC, SRC_CMAT_DESC],
flags=[CAN_ELIMINATE])
# NVIDIA-specific intrinsics
# src[] = { index, offset }.
intrinsic("ldc_nv", dest_comp=0, src_comp=[1, 1],
indices=[ACCESS, ALIGN_MUL, ALIGN_OFFSET],
flags=[CAN_ELIMINATE, CAN_REORDER])
# [Un]pins an LDCX handle around non-uniform control-flow sections
# src[] = { handle }.
intrinsic("pin_cx_handle_nv", src_comp=[1])
intrinsic("unpin_cx_handle_nv", src_comp=[1])
# src[] = { handle, offset }.
intrinsic("ldcx_nv", dest_comp=0, src_comp=[1, 1],
indices=[ACCESS, ALIGN_MUL, ALIGN_OFFSET],
flags=[CAN_ELIMINATE, CAN_REORDER])
intrinsic("load_sysval_nv", dest_comp=1, src_comp=[], bit_sizes=[32, 64],
indices=[ACCESS, BASE, DIVERGENT], flags=[CAN_ELIMINATE])
intrinsic("isberd_nv", dest_comp=1, src_comp=[1], bit_sizes=[32],
flags=[CAN_ELIMINATE, CAN_REORDER])
intrinsic("vild_nv", dest_comp=1, src_comp=[1], bit_sizes=[32],
flags=[CAN_ELIMINATE, CAN_REORDER])
intrinsic("al2p_nv", dest_comp=1, src_comp=[1], bit_sizes=[32],
indices=[BASE, FLAGS], flags=[CAN_ELIMINATE, CAN_REORDER])
# src[] = { vtx, offset }.
# FLAGS is struct nak_nir_attr_io_flags
intrinsic("ald_nv", dest_comp=0, src_comp=[1, 1], bit_sizes=[32],
indices=[BASE, RANGE_BASE, RANGE, FLAGS, ACCESS],
flags=[CAN_ELIMINATE])
# src[] = { data, vtx, offset }.
# FLAGS is struct nak_nir_attr_io_flags
intrinsic("ast_nv", src_comp=[0, 1, 1],
indices=[BASE, RANGE_BASE, RANGE, FLAGS], flags=[])
# src[] = { inv_w, offset }.
intrinsic("ipa_nv", dest_comp=1, src_comp=[1, 1], bit_sizes=[32],
indices=[BASE, FLAGS], flags=[CAN_ELIMINATE, CAN_REORDER])
# FLAGS indicate if we load vertex_id == 2
intrinsic("ldtram_nv", dest_comp=2, bit_sizes=[32],
indices=[BASE, FLAGS], flags=[CAN_ELIMINATE, CAN_REORDER])
# NVIDIA-specific Image intrinsics
# only used for kepler address calculations.
intrinsic("image_deref_load_info_nv", dest_comp=0, src_comp=[-1], bit_sizes=[32],
indices=[BASE], flags=[CAN_ELIMINATE, CAN_REORDER])
# FLAGS is struct nak_nir_suclamp_flags
intrinsic("suclamp_nv", dest_comp=2, src_comp=[1, 1], bit_sizes=[32],
indices=[FLAGS], flags=[CAN_ELIMINATE, CAN_REORDER])
# FLAGS is 1 if .is3d, otherwise 0
intrinsic("subfm_nv", dest_comp=2, src_comp=[1, 1, 1], bit_sizes=[32],
indices=[FLAGS], flags=[CAN_ELIMINATE, CAN_REORDER])
# src[] = { offset, bitfield, address }.
intrinsic("sueau_nv", dest_comp=1, src_comp=[1, 1, 1], bit_sizes=[32],
flags=[CAN_ELIMINATE, CAN_REORDER])
# src0 * src1 + src2 (with variable bit sizes)
# FLAGS is struct nak_nir_imadsp_flags
intrinsic("imadsp_nv", dest_comp=1, src_comp=[1, 1, 1], bit_sizes=[32],
indices=[FLAGS], flags=[CAN_ELIMINATE, CAN_REORDER])
# src[] = { address, fmt, pred }.
# FORMAT describes how many bits to load from memory
# FLAGS is enum nak_su_ga_offset_mode
intrinsic("suldga_nv", dest_comp=0, src_comp=[2, 1, 1], bit_sizes=[32],
indices=[FORMAT, ACCESS, FLAGS], flags=[CAN_ELIMINATE])
# src[] = { address, fmt, pred, data }.
# FLAGS is enum nak_su_ga_offset_mode
intrinsic("sustga_nv", src_comp=[2, 1, 1, 0],
indices=[ACCESS, FLAGS], bit_sizes=[32])
# Nvidia Kepler specific load-lock store-unlock
# used to lower shared atomics.
intrinsic("load_shared_lock_nv", src_comp=[1], dest_comp=2)
intrinsic("store_shared_unlock_nv", src_comp=[1, 1], dest_comp=1)
# NVIDIA-specific Geometry Shader intrinsics.
# These contain an additional integer source and destination with the primitive handle input/output.
intrinsic("emit_vertex_nv", dest_comp=1, src_comp=[1], indices=[STREAM_ID])
intrinsic("end_primitive_nv", dest_comp=1, src_comp=[1], indices=[STREAM_ID])
# Contains the final primitive handle and indicate the end of emission.
intrinsic("final_primitive_nv", src_comp=[1])
# src[] = { data }.
intrinsic("fs_out_nv", src_comp=[1], indices=[BASE], flags=[])
barrier("copy_fs_outputs_nv")
intrinsic("bar_set_nv", dest_comp=1, bit_sizes=[32], flags=[CAN_ELIMINATE])
intrinsic("bar_break_nv", dest_comp=1, bit_sizes=[32], src_comp=[1, 1])
# src[] = { bar, bar_set }
intrinsic("bar_sync_nv", src_comp=[1, 1])
# Stall until the given SSA value is available
intrinsic("ssa_bar_nv", src_comp=[1])
# NVIDIA-specific muladd intrinsics.
# src[] = { a, b, c}
intrinsic("cmat_muladd_nv", src_comp=[-1, -1, -1], dest_comp=0, bit_sizes=src2,
indices=[FLAGS], flags=[CAN_ELIMINATE])
intrinsic("cmat_load_shared_nv", src_comp=[1], dest_comp=0, indices=[NUM_MATRICES, MATRIX_LAYOUT, BASE])
# NVIDIA-specific system values
system_value("warps_per_sm_nv", 1, bit_sizes=[32])
system_value("sm_count_nv", 1, bit_sizes=[32])
system_value("warp_id_nv", 1, bit_sizes=[32])
system_value("sm_id_nv", 1, bit_sizes=[32])
# In order to deal with flipped render targets, gl_PointCoord may be flipped
# in the shader requiring a shader key or extra instructions or it may be
# flipped in hardware based on a state bit. This version of gl_PointCoord
# is defined to be whatever thing the hardware can easily give you, so long as
# it's in normalized coordinates in the range [0, 1] across the point.
#
# src0 contains barycentrics for interpolation.
intrinsic("load_point_coord_maybe_flipped", dest_comp=2, bit_sizes=[32], src_comp=[2])
# Load texture size values:
#
# Takes a sampler # and returns width, height and depth. If texture is a array
# texture it returns width, height and array size. Used for txs lowering.
intrinsic("load_texture_size_etna", src_comp=[1], dest_comp=3,
flags=[CAN_ELIMINATE, CAN_REORDER])
# Zink specific intrinsics
# src[] = { field }.
load("push_constant_zink", [1], [COMPONENT], [CAN_ELIMINATE, CAN_REORDER])
system_value("shader_index", 1, bit_sizes=[32])
system_value("coalesced_input_count", 1, bit_sizes=[32])
# Initialize a payload array per scope
#
# 0. Payloads deref
# 1. Payload count
# 2. Node index
intrinsic("initialize_node_payloads", src_comp=[-1, 1, 1], indices=[EXECUTION_SCOPE])
# Optionally enqueue payloads after shader finished writing to them
intrinsic("enqueue_node_payloads", src_comp=[-1])
# Returns true if it has been called for every payload.
intrinsic("finalize_incoming_node_payload", src_comp=[-1], dest_comp=1)
# load_{tex,smp}_state_pco(array element)
# Loads the texture/sampler state words for a given descriptor.
intrinsic("load_tex_state_pco", src_comp=[1], dest_comp=0, indices=[DESC_SET, BINDING, COMPONENT], flags=[CAN_ELIMINATE, CAN_REORDER], bit_sizes=[32])
intrinsic("load_smp_state_pco", src_comp=[1], dest_comp=0, indices=[DESC_SET, BINDING, COMPONENT, FLAGS], flags=[CAN_ELIMINATE, CAN_REORDER], bit_sizes=[32])
# load_{tex,smp}_meta_pco(array element)
# Loads the texture/sampler metadata for a given descriptor.
intrinsic("load_tex_meta_pco", src_comp=[1], dest_comp=0, indices=[DESC_SET, BINDING, COMPONENT], flags=[CAN_ELIMINATE, CAN_REORDER], bit_sizes=[32])
intrinsic("load_smp_meta_pco", src_comp=[1], dest_comp=0, indices=[DESC_SET, BINDING, COMPONENT], flags=[CAN_ELIMINATE, CAN_REORDER], bit_sizes=[32])
index("uint16_t", "smp_flags_pco")
# smp_pco(data, tex_state, smp_state)
# Performs a standard sampling operation with the given data and state words.
# Outputs between 1-4 comps.
intrinsic("smp_pco", src_comp=[16, 4, 4], dest_comp=0, indices=[SMP_FLAGS_PCO, RANGE], bit_sizes=[32])
# smp_coeffs_pco(data, tex_state, smp_state)
# Returns the calculated sampling coefficients for the given data and state words.
intrinsic("smp_coeffs_pco", src_comp=[16, 4, 4], dest_comp=8, indices=[SMP_FLAGS_PCO, RANGE], bit_sizes=[32])
# smp_raw_pco(data, tex_state, smp_state)
# Returns the raw sampling data for the given data and state words.
# Actually outputs 4/8/12/16 components, but NIR doesn't support num_components == 12, so fake it as 8 for now.
intrinsic("smp_raw_pco", src_comp=[16, 4, 4], dest_comp=16, indices=[SMP_FLAGS_PCO, RANGE], bit_sizes=[32])
# smp_write_pco(data, tex_state, smp_state)
# Performs a sample write for the given data and state words.
intrinsic("smp_write_pco", src_comp=[16, 4, 4], indices=[SMP_FLAGS_PCO, RANGE], bit_sizes=[32])
# alphatst_pco(data, comparator, comparison op)
# Performs an alpha test on the given parameters, returning float 0/1 depending on the comparison result.
intrinsic("alphatst_pco", src_comp=[1, 1, 1], dest_comp=1, flags=[CAN_ELIMINATE, CAN_REORDER], bit_sizes=[32])
# Load the current instance's number/id within its slot.
intrinsic("load_instance_num_pco", dest_comp=1, flags=[CAN_ELIMINATE, CAN_REORDER], bit_sizes=[32])
index("unsigned", "mutex_id_pco")
index("unsigned", "mutex_op_pco")
# Perform a mutex operation (slot granularity).
intrinsic("mutex_pco", indices=[MUTEX_ID_PCO, MUTEX_OP_PCO])
# isp_feedback_pco(discard condition/undef, depth value/undef)
# Perform an ISP feedback operation.
intrinsic("isp_feedback_pco", src_comp=[1, 1])
# Loads the valid mask.
intrinsic("load_savmsk_vm_pco", src_comp=[], dest_comp=1, indices=[], flags=[CAN_ELIMINATE, CAN_REORDER], bit_sizes=[32])
index("bool", "freep")
intrinsic("emitpix_pco", src_comp=[1, 1], indices=[FREEP], bit_sizes=[32])
intrinsic("wop_pco")
system_value("face_ccw_pco", 1, bit_sizes=[32])
system_value("front_face_op_pco", 1, bit_sizes=[32])
system_value("fs_meta_pco", 1, bit_sizes=[32])
intrinsic("flush_tile_buffer_pco", src_comp=[1, 1], indices=[BASE, RANGE])
intrinsic("dummy_load_store_pco", indices=[BASE])
index("bool", "scale")
index("bool", "roundzero")
intrinsic("pack_pco", src_comp=[0], dest_comp=1, flags=[CAN_ELIMINATE, CAN_REORDER], indices=[FORMAT], bit_sizes=[32])
intrinsic("unpack_pco", src_comp=[1], dest_comp=0, flags=[CAN_ELIMINATE, CAN_REORDER], indices=[FORMAT], bit_sizes=[32])
intrinsic("pck_prog_pco", src_comp=[0, 1], dest_comp=0, flags=[CAN_ELIMINATE, CAN_REORDER], indices=[SCALE, ROUNDZERO], bit_sizes=[32])
# uvsw_write_pco(offset/address, data)
intrinsic("uvsw_write_pco", src_comp=[1, 0], bit_sizes=[32])
# load_vtxin_pco(offset)
intrinsic("load_vtxin_pco", src_comp=[1], dest_comp=0, bit_sizes=[32])
# load_coeff_pco(offset)
intrinsic("load_coeff_pco", src_comp=[1], dest_comp=0, bit_sizes=[32])
# frag_store_pco(data, offset/base)
intrinsic("frag_store_pco", src_comp=[1], indices=[BASE], bit_sizes=[32])
# dma_ld_pco(address)
intrinsic("dma_ld_pco", src_comp=[2], dest_comp=0, flags=[CAN_ELIMINATE], bit_sizes=[32])
# dma_st_pco(address_data, emit_idf)
intrinsic("dma_st_pco", src_comp=[0], indices=[FLAGS], bit_sizes=[32])
# dma_st_tiled_pco(address_data, valid_mask)
intrinsic("dma_st_tiled_pco", src_comp=[3, 1], bit_sizes=[32])
# load_tiled_offset_pco(component, is_store)
intrinsic("load_tiled_offset_pco", dest_comp=1, indices=[COMPONENT, FLAGS], bit_sizes=[32])
intrinsic("load_shared_reg_alloc_size_pco", dest_comp=1, bit_sizes=[32])
# dma_ld_shregs_pco(address, burst_len, shreg_offset)
intrinsic("dma_ld_shregs_pco", src_comp=[2, 1, 1], bit_sizes=[32])
# dma_st_shregs_pco(address, burst_len, shreg_offset, emit_idf)
intrinsic("dma_st_shregs_pco", src_comp=[2, 1, 1], indices=[FLAGS], bit_sizes=[32])
intrinsic("load_tile_coord_pco", dest_comp=0, flags=[CAN_ELIMINATE, CAN_REORDER], indices=[COMPONENT], bit_sizes=[32])
intrinsic("load_fs_coeffs_pco", dest_comp=3, flags=[CAN_ELIMINATE, CAN_REORDER], indices=[COMPONENT, IO_SEMANTICS], bit_sizes=[32])
# load_packed_sample_location_pco(dword_index)
intrinsic("load_packed_sample_location_pco", src_comp=[1], dest_comp=1, flags=[CAN_ELIMINATE, CAN_REORDER], bit_sizes=[32])
# src[] = { buffer_index/deref }.
intrinsic("is_null_descriptor", src_comp=[-1], dest_comp=1, flags=[CAN_ELIMINATE, CAN_REORDER], bit_sizes=[1])
# KosmicKrisp-specific intrinsics
# Represents a pointer to the start of an argument buffer at the
# given binding
load("buffer_ptr_kk", [], [BINDING], [CAN_ELIMINATE, CAN_REORDER])
# Opaque texture<T> handle, with DEST_TYPE representing T
load("texture_handle_kk", [1], [DEST_TYPE, IMAGE_DIM, IMAGE_ARRAY, FLAGS], [CAN_ELIMINATE])
# Same as above but for depth<T> textures, T is always float
load("depth_texture_kk", [1], [IMAGE_DIM, IMAGE_ARRAY], [CAN_ELIMINATE])
# Load a bindless sampler handle mapping a binding table sampler.
intrinsic("load_sampler_handle_kk", [1], 1, [],
flags=[CAN_ELIMINATE, CAN_REORDER],
bit_sizes=[16])
|