1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
|
/*
* Copyright © Microsoft Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "nir_builder.h"
/* The following float-to-half conversion routines are based on the "half" library:
* https://sourceforge.net/projects/half/
*
* half - IEEE 754-based half-precision floating-point library.
*
* Copyright (c) 2012-2019 Christian Rau <rauy@users.sourceforge.net>
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation
* files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy,
* modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
* WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* Version 2.1.0
*/
static nir_def *
half_rounded(nir_builder *b, nir_def *value, nir_def *guard, nir_def *sticky,
nir_def *sign, nir_rounding_mode mode)
{
switch (mode) {
case nir_rounding_mode_rtne:
return nir_iadd(b, value, nir_iand(b, guard, nir_ior(b, sticky, value)));
case nir_rounding_mode_ru:
sign = nir_ushr_imm(b, sign, 31);
return nir_iadd(b, value, nir_iand(b, nir_inot(b, sign), nir_ior(b, guard, sticky)));
case nir_rounding_mode_rd:
sign = nir_ushr_imm(b, sign, 31);
return nir_iadd(b, value, nir_iand(b, sign, nir_ior(b, guard, sticky)));
default:
return value;
}
}
static nir_def *
float_to_half_impl(nir_builder *b, nir_def *src, nir_rounding_mode mode)
{
nir_def *f32infinity = nir_imm_int(b, 255 << 23);
nir_def *f16max = nir_imm_int(b, (127 + 16) << 23);
nir_def *sign = nir_iand_imm(b, src, 0x80000000);
nir_def *one = nir_imm_int(b, 1);
nir_def *abs = nir_iand_imm(b, src, 0x7FFFFFFF);
/* NaN or INF. For rtne, overflow also becomes INF, so combine the comparisons */
nir_push_if(b, nir_ige(b, abs, mode == nir_rounding_mode_rtne ? f16max : f32infinity));
nir_def *inf_nanfp16 = nir_bcsel(b,
nir_ilt(b, f32infinity, abs),
nir_imm_int(b, 0x7E00),
nir_imm_int(b, 0x7C00));
nir_push_else(b, NULL);
nir_def *overflowed_fp16 = NULL;
if (mode != nir_rounding_mode_rtne) {
/* Handle overflow */
nir_push_if(b, nir_ige(b, abs, f16max));
switch (mode) {
case nir_rounding_mode_rtz:
overflowed_fp16 = nir_imm_int(b, 0x7BFF);
break;
case nir_rounding_mode_ru:
/* Negative becomes max float, positive becomes inf */
overflowed_fp16 = nir_bcsel(b, nir_i2b(b, sign), nir_imm_int(b, 0x7BFF), nir_imm_int(b, 0x7C00));
break;
case nir_rounding_mode_rd:
/* Negative becomes inf, positive becomes max float */
overflowed_fp16 = nir_bcsel(b, nir_i2b(b, sign), nir_imm_int(b, 0x7C00), nir_imm_int(b, 0x7BFF));
break;
default:
UNREACHABLE("Should've been handled already");
}
nir_push_else(b, NULL);
}
nir_def *zero = nir_imm_int(b, 0);
nir_push_if(b, nir_ige_imm(b, abs, 113 << 23));
/* FP16 will be normal */
nir_def *value = nir_ior(b,
nir_ishl_imm(b,
nir_iadd_imm(b,
nir_ushr_imm(b, abs, 23),
-112),
10),
nir_iand_imm(b, nir_ushr_imm(b, abs, 13), 0x3FFF));
nir_def *guard = nir_iand(b, nir_ushr_imm(b, abs, 12), one);
nir_def *sticky = nir_bcsel(b, nir_ine(b, nir_iand_imm(b, abs, 0xFFF), zero), one, zero);
nir_def *normal_fp16 = half_rounded(b, value, guard, sticky, sign, mode);
nir_push_else(b, NULL);
nir_push_if(b, nir_ige_imm(b, abs, 102 << 23));
/* FP16 will be denormal */
nir_def *i = nir_isub_imm(b, 125, nir_ushr_imm(b, abs, 23));
nir_def *masked = nir_ior_imm(b, nir_iand_imm(b, abs, 0x7FFFFF), 0x800000);
value = nir_ushr(b, masked, nir_iadd(b, i, one));
guard = nir_iand(b, nir_ushr(b, masked, i), one);
sticky = nir_bcsel(b, nir_ine(b, nir_iand(b, masked, nir_isub(b, nir_ishl(b, one, i), one)), zero), one, zero);
nir_def *denormal_fp16 = half_rounded(b, value, guard, sticky, sign, mode);
nir_push_else(b, NULL);
/* Handle underflow. Nonzero values need to shift up or down for round-up or round-down */
nir_def *underflowed_fp16 = zero;
if (mode == nir_rounding_mode_ru ||
mode == nir_rounding_mode_rd) {
nir_push_if(b, nir_i2b(b, abs));
if (mode == nir_rounding_mode_ru)
underflowed_fp16 = nir_bcsel(b, nir_i2b(b, sign), zero, one);
else
underflowed_fp16 = nir_bcsel(b, nir_i2b(b, sign), one, zero);
nir_push_else(b, NULL);
nir_pop_if(b, NULL);
underflowed_fp16 = nir_if_phi(b, underflowed_fp16, zero);
}
nir_pop_if(b, NULL);
nir_def *underflowed_or_denorm_fp16 = nir_if_phi(b, denormal_fp16, underflowed_fp16);
nir_pop_if(b, NULL);
nir_def *finite_fp16 = nir_if_phi(b, normal_fp16, underflowed_or_denorm_fp16);
nir_def *finite_or_overflowed_fp16 = finite_fp16;
if (mode != nir_rounding_mode_rtne) {
nir_pop_if(b, NULL);
finite_or_overflowed_fp16 = nir_if_phi(b, overflowed_fp16, finite_fp16);
}
nir_pop_if(b, NULL);
nir_def *fp16 = nir_if_phi(b, inf_nanfp16, finite_or_overflowed_fp16);
return nir_u2u16(b, nir_ior(b, fp16, nir_ushr_imm(b, sign, 16)));
}
static nir_def *
split_f2f16_conversion(nir_builder *b, nir_def *src, nir_rounding_mode rnd)
{
nir_def *tmp = nir_f2f32(b, src);
if (rnd == nir_rounding_mode_rtne) {
/* We round down from double to half float by going through float in
* between, but this can give us inaccurate results in some cases. One
* such case is 0x40ee6a0000000001, which should round to 0x7b9b, but
* going through float first turns into 0x7b9a instead. This is because
* the first non-fitting bit is set, so we get a tie, but with the least
* significant bit of the original number set, the tie should break
* rounding up. The cast to float, however, turns into 0x47735000, which
* when going to half still ties, but now we lost the tie-up bit, and
* instead we round to the nearest even, which in this case is down.
*
* To fix this, we check if the original would have tied, and if the tie
* would have rounded up, and if both are true, set the least
* significant bit of the intermediate float to 1, so that a tie on the
* next cast rounds up as well. If the rounding already got rid of the
* tie, that set bit will just be truncated anyway and the end result
* doesn't change.
*
* Another failing case is 0x40effdffffffffff. This one doesn't have the
* tie from double to half, so it just rounds down to 0x7bff (65504.0),
* but going through float first, it turns into 0x477ff000, which does
* have the tie bit for half set, and when that one gets rounded it
* turns into 0x7c00 (Infinity).
* The fix for that one is to make sure the intermediate float does not
* have the tie bit set if the original didn't have it.
*
* For the RTZ case, we don't need to do anything, as the intermediate
* float should be ok already.
*/
int significand_bits16 = 10;
int significand_bits32 = 23;
int significand_bits64 = 52;
int f64_to_16_tie_bit = significand_bits64 - significand_bits16 - 1;
int f32_to_16_tie_bit = significand_bits32 - significand_bits16 - 1;
uint64_t f64_rounds_up_mask = ((1ULL << f64_to_16_tie_bit) - 1);
nir_def *would_tie = nir_iand_imm(b, src, 1ULL << f64_to_16_tie_bit);
nir_def *would_rnd_up = nir_iand_imm(b, src, f64_rounds_up_mask);
nir_def *tie_up = nir_b2i32(b, nir_ine_imm(b, would_rnd_up, 0));
nir_def *break_tie = nir_bcsel(b,
nir_ine_imm(b, would_tie, 0),
nir_imm_int(b, ~0),
nir_imm_int(b, ~(1U << f32_to_16_tie_bit)));
tmp = nir_ior(b, tmp, tie_up);
tmp = nir_iand(b, tmp, break_tie);
}
return tmp;
}
static bool
lower_fp16_cast_impl(nir_builder *b, nir_instr *instr, void *data)
{
nir_lower_fp16_cast_options options = *(nir_lower_fp16_cast_options *)data;
nir_src *src;
nir_def *dst;
uint8_t *swizzle = NULL;
nir_rounding_mode mode = nir_rounding_mode_undef;
if (instr->type == nir_instr_type_alu) {
nir_alu_instr *alu = nir_instr_as_alu(instr);
src = &alu->src[0].src;
swizzle = alu->src[0].swizzle;
dst = &alu->def;
switch (alu->op) {
case nir_op_f2f16:
if (b->shader->info.float_controls_execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16)
mode = nir_rounding_mode_rtz;
else if (b->shader->info.float_controls_execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16)
mode = nir_rounding_mode_rtne;
break;
case nir_op_f2f16_rtne:
mode = nir_rounding_mode_rtne;
break;
case nir_op_f2f16_rtz:
mode = nir_rounding_mode_rtz;
break;
case nir_op_f2f64:
if (src->ssa->bit_size == 16 && (options & nir_lower_fp16_split_fp64)) {
b->cursor = nir_before_instr(instr);
nir_src_rewrite(src, nir_f2f32(b, src->ssa));
return true;
}
return false;
default:
return false;
}
} else if (instr->type == nir_instr_type_intrinsic) {
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
if (intrin->intrinsic != nir_intrinsic_convert_alu_types)
return false;
src = &intrin->src[0];
dst = &intrin->def;
mode = nir_intrinsic_rounding_mode(intrin);
if (nir_intrinsic_src_type(intrin) == nir_type_float16 &&
nir_intrinsic_dest_type(intrin) == nir_type_float64 &&
(options & nir_lower_fp16_split_fp64)) {
b->cursor = nir_before_instr(instr);
nir_src_rewrite(src, nir_f2f32(b, src->ssa));
return true;
}
if (nir_intrinsic_dest_type(intrin) != nir_type_float16)
return false;
} else {
return false;
}
bool progress = false;
if (src->ssa->bit_size == 64 && (options & nir_lower_fp16_split_fp64)) {
b->cursor = nir_before_instr(instr);
nir_src_rewrite(src, split_f2f16_conversion(b, src->ssa, mode));
if (instr->type == nir_instr_type_intrinsic)
nir_intrinsic_set_src_type(nir_instr_as_intrinsic(instr), nir_type_float32);
progress = true;
}
nir_lower_fp16_cast_options req_option = 0;
switch (mode) {
case nir_rounding_mode_rtz:
req_option = nir_lower_fp16_rtz;
break;
case nir_rounding_mode_rtne:
req_option = nir_lower_fp16_rtne;
break;
case nir_rounding_mode_ru:
req_option = nir_lower_fp16_ru;
break;
case nir_rounding_mode_rd:
req_option = nir_lower_fp16_rd;
break;
case nir_rounding_mode_undef:
if ((options & nir_lower_fp16_all) == nir_lower_fp16_all) {
/* Pick one arbitrarily for lowering */
mode = nir_rounding_mode_rtne;
req_option = nir_lower_fp16_rtne;
}
/* Otherwise assume the backend can handle f2f16 with undef rounding */
break;
default:
UNREACHABLE("Invalid rounding mode");
}
if (!(options & req_option))
return progress;
b->cursor = nir_before_instr(instr);
nir_def *rets[NIR_MAX_VEC_COMPONENTS] = { NULL };
for (unsigned i = 0; i < dst->num_components; i++) {
nir_def *comp = nir_channel(b, src->ssa, swizzle ? swizzle[i] : i);
if (comp->bit_size == 64)
comp = split_f2f16_conversion(b, comp, mode);
rets[i] = float_to_half_impl(b, comp, mode);
}
nir_def *new_val = nir_vec(b, rets, dst->num_components);
nir_def_rewrite_uses(dst, new_val);
return true;
}
bool
nir_lower_fp16_casts(nir_shader *shader, nir_lower_fp16_cast_options options)
{
return nir_shader_instructions_pass(shader,
lower_fp16_cast_impl,
nir_metadata_none,
&options);
}
|