1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
|
/*
* Copyright 2021 Alyssa Rosenzweig
* Copyright 2019-2020 Collabora, Ltd.
* SPDX-License-Identifier: MIT
*/
#include "util/list.h"
#include "util/set.h"
#include "util/u_memory.h"
#include "agx_compiler.h"
/* Liveness analysis is a backwards-may dataflow analysis pass. Within a block,
* we compute live_out from live_in. The intrablock pass is linear-time. It
* returns whether progress was made. */
/* live_in[s] = GEN[s] + (live_out[s] - KILL[s]) */
void
agx_liveness_ins_update(BITSET_WORD *live, agx_instr *I)
{
agx_foreach_ssa_dest(I, d)
BITSET_CLEAR(live, I->dest[d].value);
agx_foreach_ssa_src(I, s) {
/* If the source is not live after this instruction, but becomes live
* at this instruction, this is the use that kills the source
*/
I->src[s].kill = !BITSET_TEST(live, I->src[s].value);
BITSET_SET(live, I->src[s].value);
}
}
/* Globally, liveness analysis uses a fixed-point algorithm based on a
* worklist. We initialize a work list with the exit block. We iterate the work
* list to compute live_in from live_out for each block on the work list,
* adding the predecessors of the block to the work list if we made progress.
*/
void
agx_compute_liveness(agx_context *ctx)
{
u_worklist worklist;
u_worklist_init(&worklist, ctx->num_blocks, NULL);
/* Free any previous liveness, and allocate */
unsigned words = BITSET_WORDS(ctx->alloc);
agx_foreach_block(ctx, block) {
ralloc_free(block->live_in);
ralloc_free(block->live_out);
block->live_in = rzalloc_array(block, BITSET_WORD, words);
block->live_out = rzalloc_array(block, BITSET_WORD, words);
agx_worklist_push_head(&worklist, block);
}
/* Iterate the work list */
while (!u_worklist_is_empty(&worklist)) {
/* Pop in reverse order since liveness is a backwards pass */
agx_block *blk = agx_worklist_pop_head(&worklist);
/* Update its liveness information */
memcpy(blk->live_in, blk->live_out, words * sizeof(BITSET_WORD));
agx_foreach_instr_in_block_rev(blk, I) {
if (I->op != AGX_OPCODE_PHI)
agx_liveness_ins_update(blk->live_in, I);
}
/* Propagate the live in of the successor (blk) to the live out of
* predecessors.
*
* Phi nodes are logically on the control flow edge and act in parallel.
* To handle when propagating, we kill writes from phis and make live the
* corresponding sources.
*/
agx_foreach_predecessor(blk, pred) {
BITSET_WORD *live = ralloc_array(blk, BITSET_WORD, words);
memcpy(live, blk->live_in, words * sizeof(BITSET_WORD));
/* Kill write */
agx_foreach_phi_in_block(blk, phi) {
assert(phi->dest[0].type == AGX_INDEX_NORMAL);
BITSET_CLEAR(live, phi->dest[0].value);
}
/* Make live the corresponding source */
agx_foreach_phi_in_block(blk, phi) {
agx_index operand = phi->src[agx_predecessor_index(blk, *pred)];
if (operand.type == AGX_INDEX_NORMAL) {
BITSET_SET(live, operand.value);
phi->src[agx_predecessor_index(blk, *pred)].kill = false;
}
}
bool progress = false;
for (unsigned i = 0; i < words; ++i) {
progress |= live[i] & ~((*pred)->live_out[i]);
(*pred)->live_out[i] |= live[i];
}
if (progress)
agx_worklist_push_tail(&worklist, *pred);
}
}
u_worklist_fini(&worklist);
}
|