About Social Code
aboutsummaryrefslogtreecommitdiff
path: root/src/freedreno/vulkan/tu_buffer.cc
blob: 429e8f283091da2c86d2f0fa52d8962176271c42 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
/*
 * Copyright © 2016 Red Hat.
 * Copyright © 2016 Bas Nieuwenhuizen
 * SPDX-License-Identifier: MIT
 *
 * based in part on anv driver which is:
 * Copyright © 2015 Intel Corporation
 */

#include "tu_buffer.h"

#include "vk_android.h"
#include "vk_debug_utils.h"

#include "tu_device.h"
#include "tu_rmv.h"

VKAPI_ATTR VkResult VKAPI_CALL
tu_CreateBuffer(VkDevice _device,
                const VkBufferCreateInfo *pCreateInfo,
                const VkAllocationCallbacks *pAllocator,
                VkBuffer *pBuffer)
{
   VK_FROM_HANDLE(tu_device, device, _device);
   struct tu_buffer *buffer;

   buffer = (struct tu_buffer *) vk_buffer_create(
      &device->vk, pCreateInfo, pAllocator, sizeof(*buffer));
   if (buffer == NULL)
      return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);

   if (pCreateInfo->flags & VK_BUFFER_CREATE_SPARSE_BINDING_BIT) {
      struct tu_instance *instance = device->physical_device->instance;
      BITMASK_ENUM(tu_sparse_vma_flags) flags = 0;
      uint64_t client_address = 0;

      if (pCreateInfo->flags & VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT)
         flags |= TU_SPARSE_VMA_MAP_ZERO;
      if (pCreateInfo->flags & VK_BUFFER_CREATE_DEVICE_ADDRESS_CAPTURE_REPLAY_BIT)
         flags |= TU_SPARSE_VMA_REPLAYABLE;

      const VkBufferOpaqueCaptureAddressCreateInfo *replay_info =
         vk_find_struct_const(pCreateInfo->pNext,
                              BUFFER_OPAQUE_CAPTURE_ADDRESS_CREATE_INFO);
      if (replay_info && replay_info->opaqueCaptureAddress) {
         client_address = replay_info->opaqueCaptureAddress;
         flags |= TU_SPARSE_VMA_REPLAYABLE;
      }

      VkResult result =
         tu_sparse_vma_init(device, &buffer->vk.base, &buffer->vma,
                            &buffer->vk.device_address, flags,
                            pCreateInfo->size, client_address);

      if (result != VK_SUCCESS) {
         vk_buffer_destroy(&device->vk, pAllocator, &buffer->vk);
         return result;
      }

      vk_address_binding_report(&instance->vk, &buffer->vk.base,
                                buffer->vk.device_address, buffer->vk.size,
                                VK_DEVICE_ADDRESS_BINDING_TYPE_BIND_EXT);
   }

   TU_RMV(buffer_create, device, buffer);

#ifdef HAVE_PERFETTO
   tu_perfetto_log_create_buffer(device, buffer);
#endif

   *pBuffer = tu_buffer_to_handle(buffer);

   return VK_SUCCESS;
}

VKAPI_ATTR void VKAPI_CALL
tu_DestroyBuffer(VkDevice _device,
                 VkBuffer _buffer,
                 const VkAllocationCallbacks *pAllocator)
{
   VK_FROM_HANDLE(tu_device, device, _device);
   VK_FROM_HANDLE(tu_buffer, buffer, _buffer);
   struct tu_instance *instance = device->physical_device->instance;

   if (!buffer)
      return;

   TU_RMV(buffer_destroy, device, buffer);

#ifdef HAVE_PERFETTO
   tu_perfetto_log_destroy_buffer(device, buffer);
#endif

   if (buffer->vk.create_flags & VK_BUFFER_CREATE_SPARSE_BINDING_BIT) {
      vk_address_binding_report(&instance->vk, &buffer->vk.base,
                                buffer->vk.device_address, buffer->vk.size,
                                VK_DEVICE_ADDRESS_BINDING_TYPE_UNBIND_EXT);
      tu_sparse_vma_finish(device, &buffer->vma);
   } else if (buffer->vk.device_address) {
      vk_address_binding_report(&instance->vk, &buffer->vk.base,
                                buffer->vk.device_address, buffer->bo_size,
                                VK_DEVICE_ADDRESS_BINDING_TYPE_UNBIND_EXT);
   }


   vk_buffer_destroy(&device->vk, pAllocator, &buffer->vk);
}

VKAPI_ATTR void VKAPI_CALL
tu_GetDeviceBufferMemoryRequirements(
   VkDevice _device,
   const VkDeviceBufferMemoryRequirements *pInfo,
   VkMemoryRequirements2 *pMemoryRequirements)
{
   VK_FROM_HANDLE(tu_device, device, _device);

   uint64_t size = pInfo->pCreateInfo->size;
   uint32_t alignment =
      (pInfo->pCreateInfo->flags & VK_BUFFER_CREATE_SPARSE_BINDING_BIT) ?
      os_page_size : 64;
   pMemoryRequirements->memoryRequirements = (VkMemoryRequirements) {
      .size = MAX2(align64(size, alignment), size),
      .alignment = alignment,
      .memoryTypeBits = (1 << device->physical_device->memory.non_lazy_type_count) - 1,
   };

   vk_foreach_struct(ext, pMemoryRequirements->pNext) {
      switch (ext->sType) {
      case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
         VkMemoryDedicatedRequirements *req =
            (VkMemoryDedicatedRequirements *) ext;
         req->requiresDedicatedAllocation = false;
         req->prefersDedicatedAllocation = req->requiresDedicatedAllocation;
         break;
      }
      default:
         break;
      }
   }
}

VKAPI_ATTR void VKAPI_CALL
tu_GetPhysicalDeviceExternalBufferProperties(
   VkPhysicalDevice physicalDevice,
   const VkPhysicalDeviceExternalBufferInfo *pExternalBufferInfo,
   VkExternalBufferProperties *pExternalBufferProperties)
{
   BITMASK_ENUM(VkExternalMemoryFeatureFlagBits) flags = 0;
   VkExternalMemoryHandleTypeFlags export_flags = 0;
   VkExternalMemoryHandleTypeFlags compat_flags = 0;
   switch (pExternalBufferInfo->handleType) {
   case VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT:
   case VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT:
      flags = VK_EXTERNAL_MEMORY_FEATURE_EXPORTABLE_BIT |
              VK_EXTERNAL_MEMORY_FEATURE_IMPORTABLE_BIT;
      compat_flags = export_flags =
         VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT |
         VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT;
      break;
   case VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT:
      flags = VK_EXTERNAL_MEMORY_FEATURE_IMPORTABLE_BIT;
      compat_flags = VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT;
      break;
   case VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID:
      vk_android_get_ahb_buffer_properties(
         physicalDevice, pExternalBufferInfo, pExternalBufferProperties);
      return;
   default:
      break;
   }
   pExternalBufferProperties->externalMemoryProperties =
      (VkExternalMemoryProperties) {
         .externalMemoryFeatures = flags,
         .exportFromImportedHandleTypes = export_flags,
         .compatibleHandleTypes = compat_flags,
      };
}

VKAPI_ATTR VkResult VKAPI_CALL
tu_BindBufferMemory2(VkDevice device,
                     uint32_t bindInfoCount,
                     const VkBindBufferMemoryInfo *pBindInfos)
{
   VK_FROM_HANDLE(tu_device, dev, device);
   struct tu_instance *instance = dev->physical_device->instance;

   for (uint32_t i = 0; i < bindInfoCount; ++i) {
      VK_FROM_HANDLE(tu_device_memory, mem, pBindInfos[i].memory);
      VK_FROM_HANDLE(tu_buffer, buffer, pBindInfos[i].buffer);

      const VkBindMemoryStatusKHR *status =
         vk_find_struct_const(pBindInfos[i].pNext, BIND_MEMORY_STATUS_KHR);
      if (status)
         *status->pResult = VK_SUCCESS;

      if (mem) {
         buffer->bo = mem->bo;
         buffer->vk.device_address = mem->bo->iova + pBindInfos[i].memoryOffset;
         if (buffer->vk.usage &
             (VK_BUFFER_USAGE_2_SAMPLER_DESCRIPTOR_BUFFER_BIT_EXT |
              VK_BUFFER_USAGE_2_RESOURCE_DESCRIPTOR_BUFFER_BIT_EXT))
            tu_bo_allow_dump(dev, mem->bo);
#ifdef HAVE_PERFETTO
         tu_perfetto_log_bind_buffer(dev, buffer);
#endif
         buffer->bo_size = mem->bo->size;
      } else {
         buffer->bo = NULL;
      }

      TU_RMV(buffer_bind, dev, buffer);

      vk_address_binding_report(&instance->vk, &buffer->vk.base,
                                buffer->bo->iova, buffer->bo->size,
                                VK_DEVICE_ADDRESS_BINDING_TYPE_BIND_EXT);
   }
   return VK_SUCCESS;
}

uint64_t tu_GetBufferOpaqueCaptureAddress(
   VkDevice _device,
   const VkBufferDeviceAddressInfo* pInfo)
{
   VK_FROM_HANDLE(tu_buffer, buffer, pInfo->buffer);

   /* Sparse buffers have their own iova allocation, but all others do not so
    * we only care about sparse buffers.
    */
   if (buffer->vk.create_flags & VK_BUFFER_CREATE_SPARSE_BINDING_BIT)
      return buffer->vk.device_address;

   return 0;
}