1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
|
/*
* Copyright © 2016 Red Hat.
* Copyright © 2016 Bas Nieuwenhuizen
* SPDX-License-Identifier: MIT
*
* based in part on anv driver which is:
* Copyright © 2015 Intel Corporation
*/
#include "tu_queue.h"
#include "tu_buffer.h"
#include "tu_cmd_buffer.h"
#include "tu_dynamic_rendering.h"
#include "tu_image.h"
#include "tu_knl.h"
#include "tu_device.h"
#include "vk_util.h"
static int
tu_get_submitqueue_priority(const struct tu_physical_device *pdevice,
VkQueueGlobalPriorityKHR global_priority,
enum tu_queue_type type,
bool global_priority_query)
{
if (global_priority_query) {
VkQueueFamilyGlobalPriorityPropertiesKHR props;
tu_physical_device_get_global_priority_properties(pdevice, type, &props);
bool valid = false;
for (uint32_t i = 0; i < props.priorityCount; i++) {
if (props.priorities[i] == global_priority) {
valid = true;
break;
}
}
if (!valid)
return -1;
}
/* drm/msm requires a priority of 0 */
if (type == TU_QUEUE_SPARSE)
return 0;
/* Valid values are from 0 to (pdevice->submitqueue_priority_count - 1),
* with 0 being the highest priority.
*
* Map vulkan's REALTIME to LOW priority to that range.
*/
int priority;
switch (global_priority) {
case VK_QUEUE_GLOBAL_PRIORITY_LOW_KHR:
priority = 3;
break;
case VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_KHR:
priority = 2;
break;
case VK_QUEUE_GLOBAL_PRIORITY_HIGH_KHR:
priority = 1;
break;
case VK_QUEUE_GLOBAL_PRIORITY_REALTIME_KHR:
priority = 0;
break;
default:
UNREACHABLE("");
break;
}
priority =
DIV_ROUND_UP((pdevice->submitqueue_priority_count - 1) * priority, 3);
return priority;
}
static void
submit_add_entries(struct tu_device *dev, void *submit,
struct util_dynarray *dump_cmds,
struct tu_cs_entry *entries, unsigned num_entries)
{
tu_submit_add_entries(dev, submit, entries, num_entries);
if (FD_RD_DUMP(ENABLE)) {
util_dynarray_append_array(dump_cmds, struct tu_cs_entry, entries,
num_entries);
}
}
/* Normally, we can just resolve visibility stream patchpoints on the CPU by
* writing directly to the command stream with the final iova of the allocated
* BO. However this doesn't work with SIMULTANEOUS_USE command buffers, where
* the same buffer may be in flight more than once, including within a submit.
* To handle this we have to update the patchpoints on the GPU. The lifetime
* of the CS used to write the patchpoints on the GPU is tricky, since if we
* always allocate a new one for each submit the size could grow infinitely if
* the command buffer is never freed or reset. Instead this implements a pool
* of patchpoint CS's per command buffer that reuses finiehed CS's.
*/
static VkResult
get_vis_stream_patchpoint_cs(struct tu_cmd_buffer *cmd,
struct tu_cs *cs,
struct tu_cs *sub_cs,
uint64_t *fence_iova)
{
/* See below for the commands emitted to the CS. */
uint32_t cs_size = 5 *
util_dynarray_num_elements(&cmd->vis_stream_patchpoints,
struct tu_vis_stream_patchpoint) + 4 + 6;
util_dynarray_foreach (&cmd->vis_stream_cs_bos,
struct tu_vis_stream_patchpoint_cs,
patchpoint_cs) {
uint32_t *fence = (uint32_t *)patchpoint_cs->fence_bo.bo->map;
if (*fence == 1) {
*fence = 0;
tu_cs_init_suballoc(cs, cmd->device, &patchpoint_cs->cs_bo);
tu_cs_begin_sub_stream(cs, cs_size, sub_cs);
*fence_iova = patchpoint_cs->fence_bo.iova;
return VK_SUCCESS;
}
}
struct tu_vis_stream_patchpoint_cs patchpoint_cs;
mtx_lock(&cmd->device->vis_stream_suballocator_mtx);
VkResult result =
tu_suballoc_bo_alloc(&patchpoint_cs.cs_bo,
&cmd->device->vis_stream_suballocator,
cs_size * 4, 4);
if (result != VK_SUCCESS) {
mtx_unlock(&cmd->device->vis_stream_suballocator_mtx);
return result;
}
result =
tu_suballoc_bo_alloc(&patchpoint_cs.fence_bo,
&cmd->device->vis_stream_suballocator,
4, 4);
if (result != VK_SUCCESS) {
tu_suballoc_bo_free(&cmd->device->vis_stream_suballocator,
&patchpoint_cs.cs_bo);
mtx_unlock(&cmd->device->vis_stream_suballocator_mtx);
return result;
}
mtx_unlock(&cmd->device->vis_stream_suballocator_mtx);
util_dynarray_append(&cmd->vis_stream_cs_bos, patchpoint_cs);
tu_cs_init_suballoc(cs, cmd->device, &patchpoint_cs.cs_bo);
tu_cs_begin_sub_stream(cs, cs_size, sub_cs);
*fence_iova = patchpoint_cs.fence_bo.iova;
return VK_SUCCESS;
}
static VkResult
resolve_vis_stream_patchpoints(struct tu_queue *queue,
void *submit,
struct util_dynarray *dump_cmds,
struct tu_cmd_buffer **cmd_buffers,
uint32_t cmdbuf_count)
{
struct tu_device *dev = queue->device;
uint32_t max_size = 0;
uint32_t rp_count = 0;
for (unsigned i = 0; i < cmdbuf_count; i++) {
max_size = MAX2(max_size, cmd_buffers[i]->vsc_size);
rp_count += cmd_buffers[i]->state.tile_render_pass_count;
}
if (max_size == 0)
return VK_SUCCESS;
struct tu_bo *bo = NULL;
VkResult result = VK_SUCCESS;
/* Note, we want to make the vis stream count at least 1 because an
* BV_BR_OFFSET of 0 can lead to hangs even if not using visibility
* streams and therefore should be avoided.
*/
uint32_t min_vis_stream_count =
(TU_DEBUG(NO_CONCURRENT_BINNING) || dev->physical_device->info->chip < 7) ?
1 : MIN2(MAX2(rp_count, 1), TU_MAX_VIS_STREAMS);
uint32_t vis_stream_count;
mtx_lock(&dev->vis_stream_mtx);
if (!dev->vis_stream_bo || max_size > dev->vis_stream_size ||
min_vis_stream_count > dev->vis_stream_count) {
dev->vis_stream_count = MAX2(dev->vis_stream_count,
min_vis_stream_count);
dev->vis_stream_size = MAX2(dev->vis_stream_size, max_size);
if (dev->vis_stream_bo)
tu_bo_finish(dev, dev->vis_stream_bo);
result = tu_bo_init_new(dev, &dev->vk.base, &dev->vis_stream_bo,
dev->vis_stream_size * dev->vis_stream_count,
TU_BO_ALLOC_INTERNAL_RESOURCE,
"visibility stream");
}
bo = dev->vis_stream_bo;
vis_stream_count = dev->vis_stream_count;
mtx_unlock(&dev->vis_stream_mtx);
if (!bo)
return result;
/* Attach a reference to the BO to each command buffer involved in the
* submit.
*/
for (unsigned i = 0; i < cmdbuf_count; i++) {
bool has_bo = false;
util_dynarray_foreach (&cmd_buffers[i]->vis_stream_bos,
struct tu_bo *, cmd_bo) {
if (*cmd_bo == bo) {
has_bo = true;
break;
}
}
if (!has_bo) {
util_dynarray_append(&cmd_buffers[i]->vis_stream_bos,
tu_bo_get_ref(bo));
}
}
unsigned render_pass_idx = queue->render_pass_idx;
for (unsigned i = 0; i < cmdbuf_count; i++) {
struct tu_cs cs, sub_cs;
uint64_t fence_iova = 0;
if (cmd_buffers[i]->usage_flags &
VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT) {
result = get_vis_stream_patchpoint_cs(cmd_buffers[i],
&cs, &sub_cs, &fence_iova);
if (result != VK_SUCCESS)
return result;
}
util_dynarray_foreach (&cmd_buffers[i]->vis_stream_patchpoints,
struct tu_vis_stream_patchpoint,
patchpoint) {
unsigned vis_stream_idx =
(render_pass_idx + patchpoint->render_pass_idx) %
vis_stream_count;
uint64_t final_iova =
bo->iova + vis_stream_idx * max_size + patchpoint->offset;
if (cmd_buffers[i]->usage_flags &
VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT) {
tu_cs_emit_pkt7(&sub_cs, CP_MEM_WRITE, 4);
tu_cs_emit_qw(&sub_cs, patchpoint->iova);
tu_cs_emit_qw(&sub_cs, final_iova);
} else {
patchpoint->data[0] = final_iova;
patchpoint->data[1] = final_iova >> 32;
}
}
struct tu_vis_stream_patchpoint *count_patchpoint =
&cmd_buffers[i]->vis_stream_count_patchpoint;
if (count_patchpoint->data) {
if (cmd_buffers[i]->usage_flags &
VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT) {
tu_cs_emit_pkt7(&sub_cs, CP_MEM_WRITE, 3);
tu_cs_emit_qw(&sub_cs, count_patchpoint->iova);
tu_cs_emit(&sub_cs, vis_stream_count);
} else {
count_patchpoint->data[0] = vis_stream_count;
}
}
if (cmd_buffers[i]->usage_flags &
VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT) {
tu_cs_emit_pkt7(&sub_cs, CP_WAIT_MEM_WRITES, 0);
tu_cs_emit_pkt7(&sub_cs, CP_WAIT_FOR_ME, 0);
/* Signal that this CS is done and can be reused. */
tu_cs_emit_pkt7(&sub_cs, CP_MEM_WRITE, 3);
tu_cs_emit_qw(&sub_cs, fence_iova);
tu_cs_emit(&sub_cs, 1);
struct tu_cs_entry entry = tu_cs_end_sub_stream(&cs, &sub_cs);
submit_add_entries(queue->device, submit, dump_cmds, &entry, 1);
}
render_pass_idx += cmd_buffers[i]->state.tile_render_pass_count;
}
queue->render_pass_idx = render_pass_idx;
return VK_SUCCESS;
}
static VkResult
queue_submit_sparse(struct vk_queue *_queue, struct vk_queue_submit *vk_submit)
{
struct tu_queue *queue = list_entry(_queue, struct tu_queue, vk);
struct tu_device *device = queue->device;
pthread_mutex_lock(&device->submit_mutex);
void *submit = tu_submit_create(device);
if (!submit)
return VK_ERROR_OUT_OF_HOST_MEMORY;
for (uint32_t i = 0; i < vk_submit->buffer_bind_count; i++) {
const VkSparseBufferMemoryBindInfo *bind = &vk_submit->buffer_binds[i];
VK_FROM_HANDLE(tu_buffer, buffer, bind->buffer);
for (uint32_t j = 0; j < bind->bindCount; j++) {
const VkSparseMemoryBind *range = &bind->pBinds[j];
VK_FROM_HANDLE(tu_device_memory, mem, range->memory);
tu_submit_add_bind(queue->device, submit,
&buffer->vma, range->resourceOffset,
mem ? mem->bo : NULL,
mem ? range->memoryOffset : 0,
range->size);
}
}
for (uint32_t i = 0; i < vk_submit->image_bind_count; i++) {
const VkSparseImageMemoryBindInfo *bind = &vk_submit->image_binds[i];
VK_FROM_HANDLE(tu_image, image, bind->image);
for (uint32_t j = 0; j < bind->bindCount; j++)
tu_bind_sparse_image(device, submit, image, &bind->pBinds[j]);
}
for (uint32_t i = 0; i < vk_submit->image_opaque_bind_count; i++) {
const VkSparseImageOpaqueMemoryBindInfo *bind =
&vk_submit->image_opaque_binds[i];
VK_FROM_HANDLE(tu_image, image, bind->image);
for (uint32_t j = 0; j < bind->bindCount; j++) {
const VkSparseMemoryBind *range = &bind->pBinds[j];
VK_FROM_HANDLE(tu_device_memory, mem, range->memory);
tu_submit_add_bind(queue->device, submit,
&image->vma, range->resourceOffset,
mem ? mem->bo : NULL,
mem ? range->memoryOffset : 0,
range->size);
}
}
VkResult result =
tu_queue_submit(queue, submit, vk_submit->waits, vk_submit->wait_count,
vk_submit->signals, vk_submit->signal_count,
NULL);
if (result != VK_SUCCESS) {
pthread_mutex_unlock(&device->submit_mutex);
goto out;
}
device->submit_count++;
pthread_mutex_unlock(&device->submit_mutex);
pthread_cond_broadcast(&queue->device->timeline_cond);
out:
tu_submit_finish(device, submit);
return result;
}
static VkResult
queue_submit(struct vk_queue *_queue, struct vk_queue_submit *vk_submit)
{
MESA_TRACE_FUNC();
struct tu_queue *queue = list_entry(_queue, struct tu_queue, vk);
struct tu_device *device = queue->device;
bool u_trace_enabled = u_trace_should_process(&queue->device->trace_context);
struct util_dynarray dump_cmds;
if (vk_submit->buffer_bind_count ||
vk_submit->image_bind_count ||
vk_submit->image_opaque_bind_count)
return queue_submit_sparse(_queue, vk_submit);
dump_cmds = UTIL_DYNARRAY_INIT;
uint32_t perf_pass_index =
device->perfcntrs_pass_cs_entries ? vk_submit->perf_pass_index : ~0;
if (TU_DEBUG(LOG_SKIP_GMEM_OPS))
tu_dbg_log_gmem_load_store_skips(device);
pthread_mutex_lock(&device->submit_mutex);
struct tu_cmd_buffer **cmd_buffers =
(struct tu_cmd_buffer **) vk_submit->command_buffers;
uint32_t cmdbuf_count = vk_submit->command_buffer_count;
VkResult result =
tu_insert_dynamic_cmdbufs(device, &cmd_buffers, &cmdbuf_count);
if (result != VK_SUCCESS)
return result;
bool has_trace_points = false;
static_assert(offsetof(struct tu_cmd_buffer, vk) == 0,
"vk must be first member of tu_cmd_buffer");
for (unsigned i = 0; i < vk_submit->command_buffer_count; i++) {
if (u_trace_enabled && u_trace_has_points(&cmd_buffers[i]->trace))
has_trace_points = true;
}
struct tu_u_trace_submission_data *u_trace_submission_data = NULL;
void *submit = tu_submit_create(device);
if (!submit)
goto fail_create_submit;
result = resolve_vis_stream_patchpoints(queue, submit, &dump_cmds,
cmd_buffers, cmdbuf_count);
if (result != VK_SUCCESS)
goto out;
if (has_trace_points) {
tu_u_trace_submission_data_create(
device, cmd_buffers, cmdbuf_count, &u_trace_submission_data);
}
for (uint32_t i = 0; i < cmdbuf_count; i++) {
struct tu_cmd_buffer *cmd_buffer = cmd_buffers[i];
struct tu_cs *cs = &cmd_buffer->cs;
if (perf_pass_index != ~0) {
struct tu_cs_entry *perf_cs_entry =
&cmd_buffer->device->perfcntrs_pass_cs_entries[perf_pass_index];
submit_add_entries(device, submit, &dump_cmds, perf_cs_entry, 1);
}
submit_add_entries(device, submit, &dump_cmds, cs->entries,
cs->entry_count);
if (u_trace_submission_data &&
u_trace_submission_data->timestamp_copy_data) {
struct tu_cs *cs = &u_trace_submission_data->timestamp_copy_data->cs;
submit_add_entries(device, submit, &dump_cmds, cs->entries,
cs->entry_count);
}
}
if (tu_autotune_submit_requires_fence(cmd_buffers, cmdbuf_count)) {
struct tu_cs *autotune_cs = tu_autotune_on_submit(
device, &device->autotune, cmd_buffers, cmdbuf_count);
submit_add_entries(device, submit, &dump_cmds, autotune_cs->entries,
autotune_cs->entry_count);
}
if (cmdbuf_count && FD_RD_DUMP(ENABLE) &&
fd_rd_output_begin(&queue->device->rd_output,
queue->device->vk.current_frame, queue->device->submit_count)) {
struct tu_device *device = queue->device;
struct fd_rd_output *rd_output = &device->rd_output;
if (FD_RD_DUMP(FULL)) {
VkResult result = tu_queue_wait_fence(queue, queue->fence, ~0);
if (result != VK_SUCCESS) {
mesa_loge("FD_RD_DUMP_FULL: wait on previous submission for device %u and queue %d failed: %u",
device->device_idx, queue->msm_queue_id, 0);
}
}
fd_rd_output_write_section(rd_output, RD_CHIP_ID, &device->physical_device->dev_id.chip_id, 8);
fd_rd_output_write_section(rd_output, RD_CMD, "tu-dump", 8);
mtx_lock(&device->bo_mutex);
util_dynarray_foreach (&device->dump_bo_list, struct tu_bo *, bo_ptr) {
struct tu_bo *bo = *bo_ptr;
uint64_t iova = bo->iova;
uint32_t buf[3] = { iova, bo->size, iova >> 32 };
fd_rd_output_write_section(rd_output, RD_GPUADDR, buf, 12);
if (bo->dump || FD_RD_DUMP(FULL)) {
tu_bo_map(device, bo, NULL); /* note: this would need locking to be safe */
fd_rd_output_write_section(rd_output, RD_BUFFER_CONTENTS, bo->map, bo->size);
}
}
mtx_unlock(&device->bo_mutex);
util_dynarray_foreach (&dump_cmds, struct tu_cs_entry, cmd) {
uint64_t iova = cmd->bo->iova + cmd->offset;
uint32_t size = cmd->size >> 2;
uint32_t buf[3] = { iova, size, iova >> 32 };
fd_rd_output_write_section(rd_output, RD_CMDSTREAM_ADDR, buf, 12);
}
fd_rd_output_end(rd_output);
}
util_dynarray_fini(&dump_cmds);
#ifdef HAVE_PERFETTO
if (u_trace_should_process(&device->trace_context)) {
for (int i = 0; i < vk_submit->command_buffer_count; i++)
tu_perfetto_refresh_debug_utils_object_name(
&vk_submit->command_buffers[i]->base);
}
#endif
result =
tu_queue_submit(queue, submit, vk_submit->waits, vk_submit->wait_count,
vk_submit->signals, vk_submit->signal_count,
u_trace_submission_data);
if (result != VK_SUCCESS) {
pthread_mutex_unlock(&device->submit_mutex);
goto out;
}
tu_debug_bos_print_stats(device);
if (u_trace_submission_data) {
u_trace_submission_data->submission_id = device->submit_count;
u_trace_submission_data->queue = queue;
u_trace_submission_data->fence = queue->fence;
for (uint32_t i = 0; i < u_trace_submission_data->cmd_buffer_count; i++) {
bool free_data = i == u_trace_submission_data->last_buffer_with_tracepoints;
if (u_trace_submission_data->trace_per_cmd_buffer[i])
u_trace_flush(u_trace_submission_data->trace_per_cmd_buffer[i],
u_trace_submission_data, queue->device->vk.current_frame,
free_data);
}
if (u_trace_submission_data->timestamp_copy_data) {
u_trace_flush(&u_trace_submission_data->timestamp_copy_data->trace,
u_trace_submission_data, queue->device->vk.current_frame,
true);
}
}
device->submit_count++;
pthread_mutex_unlock(&device->submit_mutex);
pthread_cond_broadcast(&queue->device->timeline_cond);
u_trace_context_process(&device->trace_context, false);
out:
tu_submit_finish(device, submit);
fail_create_submit:
if (cmd_buffers != (struct tu_cmd_buffer **) vk_submit->command_buffers)
vk_free(&queue->device->vk.alloc, cmd_buffers);
return result;
}
VkResult
tu_queue_init(struct tu_device *device,
struct tu_queue *queue,
enum tu_queue_type type,
int idx,
const VkDeviceQueueCreateInfo *create_info)
{
const VkDeviceQueueGlobalPriorityCreateInfoKHR *priority_info =
vk_find_struct_const(create_info->pNext,
DEVICE_QUEUE_GLOBAL_PRIORITY_CREATE_INFO_KHR);
const VkQueueGlobalPriorityKHR global_priority = priority_info ?
priority_info->globalPriority :
(TU_DEBUG(HIPRIO) ? VK_QUEUE_GLOBAL_PRIORITY_HIGH_KHR :
VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_KHR);
const int priority = tu_get_submitqueue_priority(
device->physical_device, global_priority, type,
device->vk.enabled_features.globalPriorityQuery);
if (priority < 0) {
return vk_startup_errorf(device->instance, VK_ERROR_INITIALIZATION_FAILED,
"invalid global priority");
}
VkResult result = vk_queue_init(&queue->vk, &device->vk, create_info, idx);
if (result != VK_SUCCESS)
return result;
queue->device = device;
queue->priority = priority;
queue->vk.driver_submit =
(type == TU_QUEUE_SPARSE) ? queue_submit_sparse : queue_submit;
queue->type = type;
int ret = tu_drm_submitqueue_new(device, queue);
if (ret)
return vk_startup_errorf(device->instance, VK_ERROR_INITIALIZATION_FAILED,
"submitqueue create failed");
queue->fence = -1;
return VK_SUCCESS;
}
void
tu_queue_finish(struct tu_queue *queue)
{
vk_queue_finish(&queue->vk);
tu_drm_submitqueue_close(queue->device, queue);
}
|