1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
|
/*
* Copyright © 2014 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "intel_nir.h"
#include "brw_nir.h"
#include "brw_private.h"
#include "brw_sampler.h"
#include "compiler/glsl_types.h"
#include "compiler/nir/nir_builder.h"
#include "dev/intel_debug.h"
#include "util/sparse_bitset.h"
/**
* Returns the minimum number of vec4 elements needed to pack a type.
*
* For simple types, it will return 1 (a single vec4); for matrices, the
* number of columns; for array and struct, the sum of the vec4_size of
* each of its elements; and for sampler and atomic, zero.
*
* This method is useful to calculate how much register space is needed to
* store a particular type.
*/
int
type_size_vec4(const struct glsl_type *type, bool bindless)
{
return glsl_count_attribute_slots(type, false);
}
static bool
is_input(nir_intrinsic_instr *intrin)
{
return intrin->intrinsic == nir_intrinsic_load_input ||
intrin->intrinsic == nir_intrinsic_load_per_primitive_input ||
intrin->intrinsic == nir_intrinsic_load_per_vertex_input ||
intrin->intrinsic == nir_intrinsic_load_interpolated_input;
}
static bool
is_output(nir_intrinsic_instr *intrin)
{
return intrin->intrinsic == nir_intrinsic_load_output ||
intrin->intrinsic == nir_intrinsic_load_per_vertex_output ||
intrin->intrinsic == nir_intrinsic_load_per_view_output ||
intrin->intrinsic == nir_intrinsic_store_output ||
intrin->intrinsic == nir_intrinsic_store_per_vertex_output ||
intrin->intrinsic == nir_intrinsic_store_per_view_output;
}
static bool
remap_tess_levels(nir_builder *b, nir_intrinsic_instr *intr, void *data)
{
if (!(b->shader->info.stage == MESA_SHADER_TESS_CTRL && is_output(intr)) &&
!(b->shader->info.stage == MESA_SHADER_TESS_EVAL && is_input(intr)))
return false;
/* Handled in a different pass */
nir_io_semantics io_sem = nir_intrinsic_io_semantics(intr);
if (io_sem.location != VARYING_SLOT_TESS_LEVEL_INNER &&
io_sem.location != VARYING_SLOT_TESS_LEVEL_OUTER)
return false;
const unsigned component = nir_intrinsic_component(intr);
bool out_of_bounds = false;
bool write = !nir_intrinsic_infos[intr->intrinsic].has_dest;
unsigned mask = write ? nir_intrinsic_write_mask(intr) : 0;
nir_def *src = NULL, *dest = NULL;
enum tess_primitive_mode _primitive_mode = (uintptr_t)data;
if (write) {
assert(intr->num_components == intr->src[0].ssa->num_components);
} else {
assert(intr->num_components == intr->def.num_components);
}
if (io_sem.location == VARYING_SLOT_TESS_LEVEL_INNER) {
b->cursor = write ? nir_before_instr(&intr->instr)
: nir_after_instr(&intr->instr);
switch (_primitive_mode) {
case TESS_PRIMITIVE_QUADS:
/* gl_TessLevelInner[0..1] lives at DWords 3-2 (reversed). */
nir_intrinsic_set_base(intr, 0);
if (write) {
assert(intr->src[0].ssa->num_components == 2);
intr->num_components = 4;
nir_def *undef = nir_undef(b, 1, 32);
nir_def *x = nir_channel(b, intr->src[0].ssa, 0);
nir_def *y = nir_channel(b, intr->src[0].ssa, 1);
src = nir_vec4(b, undef, undef, y, x);
mask = !!(mask & WRITEMASK_X) << 3 | !!(mask & WRITEMASK_Y) << 2;
} else if (intr->def.num_components > 1) {
assert(intr->def.num_components == 2);
intr->num_components = 4;
intr->def.num_components = 4;
unsigned wz[2] = { 3, 2 };
dest = nir_swizzle(b, &intr->def, wz, 2);
} else {
nir_intrinsic_set_component(intr, 3 - component);
}
break;
case TESS_PRIMITIVE_TRIANGLES:
/* gl_TessLevelInner[0] lives at DWord 4. */
nir_intrinsic_set_base(intr, 1);
mask &= WRITEMASK_X;
out_of_bounds = component > 0;
break;
case TESS_PRIMITIVE_ISOLINES:
out_of_bounds = true;
break;
default:
UNREACHABLE("Bogus tessellation domain");
}
} else {
b->cursor = write ? nir_before_instr(&intr->instr)
: nir_after_instr(&intr->instr);
nir_intrinsic_set_base(intr, 1);
switch (_primitive_mode) {
case TESS_PRIMITIVE_QUADS:
case TESS_PRIMITIVE_TRIANGLES:
/* Quads: gl_TessLevelOuter[0..3] lives at DWords 7-4 (reversed).
* Triangles: gl_TessLevelOuter[0..2] lives at DWords 7-5 (reversed).
*/
if (write) {
assert(intr->src[0].ssa->num_components == 4);
unsigned wzyx[4] = { 3, 2, 1, 0 };
src = nir_swizzle(b, intr->src[0].ssa, wzyx, 4);
mask = !!(mask & WRITEMASK_X) << 3 | !!(mask & WRITEMASK_Y) << 2 |
!!(mask & WRITEMASK_Z) << 1 | !!(mask & WRITEMASK_W) << 0;
/* Don't overwrite the inner factor at DWord 4 for triangles */
if (_primitive_mode == TESS_PRIMITIVE_TRIANGLES)
mask &= ~WRITEMASK_X;
} else if (intr->def.num_components > 1) {
assert(intr->def.num_components == 4);
unsigned wzyx[4] = { 3, 2, 1, 0 };
dest = nir_swizzle(b, &intr->def, wzyx, 4);
} else {
nir_intrinsic_set_component(intr, 3 - component);
out_of_bounds = component == 3 &&
_primitive_mode == TESS_PRIMITIVE_TRIANGLES;
}
break;
case TESS_PRIMITIVE_ISOLINES:
/* gl_TessLevelOuter[0..1] lives at DWords 6-7 (in order). */
if (write) {
assert(intr->src[0].ssa->num_components == 4);
nir_def *undef = nir_undef(b, 1, 32);
nir_def *x = nir_channel(b, intr->src[0].ssa, 0);
nir_def *y = nir_channel(b, intr->src[0].ssa, 1);
src = nir_vec4(b, undef, undef, x, y);
mask = !!(mask & WRITEMASK_X) << 2 | !!(mask & WRITEMASK_Y) << 3;
} else {
nir_intrinsic_set_component(intr, 2 + component);
out_of_bounds = component > 1;
}
break;
default:
UNREACHABLE("Bogus tessellation domain");
}
}
if (out_of_bounds) {
if (!write)
nir_def_rewrite_uses(&intr->def, nir_undef(b, 1, 32));
nir_instr_remove(&intr->instr);
} else if (write) {
nir_intrinsic_set_write_mask(intr, mask);
if (src) {
nir_src_rewrite(&intr->src[0], src);
}
} else if (dest) {
nir_def_rewrite_uses_after(&intr->def, dest);
}
return true;
}
static bool
remap_tess_header_values(nir_shader *nir, enum tess_primitive_mode _primitive_mode)
{
return nir_shader_intrinsics_pass(nir, remap_tess_levels,
nir_metadata_control_flow,
(void*)(uintptr_t)_primitive_mode);
}
struct tess_levels_temporary_state {
nir_variable *inner_factors_var;
nir_variable *outer_factors_var;
};
static bool
remap_tess_levels_to_temporary(nir_builder *b, nir_intrinsic_instr *intrin, void *data)
{
if (!(b->shader->info.stage == MESA_SHADER_TESS_CTRL && is_output(intrin)))
return false;
/* Handled in a different pass */
nir_io_semantics io_sem = nir_intrinsic_io_semantics(intrin);
if (io_sem.location != VARYING_SLOT_TESS_LEVEL_INNER &&
io_sem.location != VARYING_SLOT_TESS_LEVEL_OUTER)
return false;
struct tess_levels_temporary_state *state = data;
nir_variable *var = io_sem.location == VARYING_SLOT_TESS_LEVEL_INNER ?
state->inner_factors_var : state->outer_factors_var;
if (nir_intrinsic_infos[intrin->intrinsic].has_dest) {
b->cursor = nir_after_instr(&intrin->instr);
nir_def *new_val =
nir_load_array_var(b, var,
nir_iadd_imm(b, nir_get_io_offset_src(intrin)->ssa,
nir_intrinsic_component(intrin)));
nir_def_replace(&intrin->def, new_val);
} else {
b->cursor = nir_instr_remove(&intrin->instr);
nir_store_array_var(b, var,
nir_iadd_imm(b, nir_get_io_offset_src(intrin)->ssa,
nir_intrinsic_component(intrin)),
intrin->src[0].ssa,
nir_intrinsic_write_mask(intrin));
}
return true;
}
static bool
remap_tess_header_values_dynamic(nir_shader *nir, const struct intel_device_info *devinfo)
{
nir_function_impl *impl = nir_shader_get_entrypoint(nir);
struct tess_levels_temporary_state state = {
.inner_factors_var = nir_local_variable_create(
impl, glsl_array_type(glsl_uint_type(), 2, 0),
"__temp_inner_factors"),
.outer_factors_var = nir_local_variable_create(
impl, glsl_array_type(glsl_uint_type(), 4, 0),
"__temp_outer_factors"),
};
nir_shader_intrinsics_pass(nir, remap_tess_levels_to_temporary,
nir_metadata_control_flow, &state);
nir_builder _b = nir_builder_at(nir_after_impl(impl)), *b = &_b;
nir_def *tess_config = nir_load_tess_config_intel(b);
nir_def *is_quad =
nir_test_mask(b, tess_config, INTEL_TESS_CONFIG_QUADS);
nir_def *is_tri =
nir_test_mask(b, tess_config, INTEL_TESS_CONFIG_TRIANGLES);
nir_def *is_quad_tri =
nir_test_mask(b, tess_config, (INTEL_TESS_CONFIG_QUADS |
INTEL_TESS_CONFIG_TRIANGLES));
nir_def *zero = nir_imm_int(b, 0);
/* Format below is described in the SKL PRMs, Volume 7: 3D-Media-GPGPU,
* Patch URB Entry (Patch Record) Output, Patch Header DW0-7
*
* Based on topology we use one of those :
* - Patch Header: QUAD Domain / LEGACY Patch Header Layout
* - Patch Header: TRI Domain / LEGACY Patch Header Layout
* - Patch Header: ISOLINE Domain / LEGACY Patch Header Layout
*
* There are more convenient layouts in more recent generations but they're
* not available on all platforms.
*/
nir_def *values[8] = {
zero,
zero,
nir_bcsel(b, is_quad_tri, nir_load_array_var_imm(b, state.inner_factors_var, 1), zero),
nir_bcsel(b, is_quad_tri, nir_load_array_var_imm(b, state.inner_factors_var, 0), zero),
nir_bcsel(b, is_quad, nir_load_array_var_imm(b, state.outer_factors_var, 3),
nir_bcsel(b, is_tri, nir_load_array_var_imm(b, state.inner_factors_var, 0),
zero)),
nir_bcsel(b, is_quad_tri, nir_load_array_var_imm(b, state.outer_factors_var, 2), zero),
nir_bcsel(b, is_quad_tri, nir_load_array_var_imm(b, state.outer_factors_var, 1),
nir_load_array_var_imm(b, state.outer_factors_var, 0)),
nir_bcsel(b, is_quad_tri, nir_load_array_var_imm(b, state.outer_factors_var, 0),
nir_load_array_var_imm(b, state.outer_factors_var, 1)),
};
nir_store_output(b, nir_vec(b, &values[0], 4), zero, .base = 0,
.io_semantics.location = VARYING_SLOT_TESS_LEVEL_INNER);
nir_store_output(b, nir_vec(b, &values[4], 4), zero, .base = 1,
.io_semantics.location = VARYING_SLOT_TESS_LEVEL_OUTER);
nir_progress(true, impl, nir_metadata_none);
return true;
}
static bool
remap_patch_urb_offsets_instr(nir_builder *b, nir_intrinsic_instr *intrin, void *data)
{
if (!(b->shader->info.stage == MESA_SHADER_TESS_CTRL && is_output(intrin)) &&
!(b->shader->info.stage == MESA_SHADER_TESS_EVAL && is_input(intrin)))
return false;
/* Handled in a different pass */
nir_io_semantics io_sem = nir_intrinsic_io_semantics(intrin);
if (io_sem.location == VARYING_SLOT_TESS_LEVEL_INNER ||
io_sem.location == VARYING_SLOT_TESS_LEVEL_OUTER)
return false;
gl_varying_slot varying = intrin->const_index[0];
const struct intel_vue_map *vue_map = data;
int vue_slot = vue_map->varying_to_slot[varying];
assert(vue_slot != -1);
intrin->const_index[0] = vue_slot;
nir_src *vertex = nir_get_io_arrayed_index_src(intrin);
if (vertex) {
b->cursor = nir_before_instr(&intrin->instr);
bool dyn_tess_config =
b->shader->info.stage == MESA_SHADER_TESS_EVAL &&
vue_map->layout != INTEL_VUE_LAYOUT_FIXED;
nir_def *num_per_vertex_slots =
dyn_tess_config ? intel_nir_tess_field(b, PER_VERTEX_SLOTS) :
nir_imm_int(b, vue_map->num_per_vertex_slots);
/* Multiply by the number of per-vertex slots. */
nir_def *vertex_offset = nir_imul(b, vertex->ssa, num_per_vertex_slots);
/* Add it to the existing offset */
nir_src *offset = nir_get_io_offset_src(intrin);
nir_def *total_offset = nir_iadd(b, vertex_offset, offset->ssa);
/* In the Tessellation evaluation shader, reposition the offset of
* builtins when using separate layout.
*/
if (dyn_tess_config) {
if (varying < VARYING_SLOT_VAR0) {
nir_def *builtins_offset = intel_nir_tess_field(b, BUILTINS);
nir_def *builtins_base_offset = nir_iadd_imm(
b, builtins_offset,
vue_map->varying_to_slot[varying] - vue_map->builtins_slot_offset);
total_offset = nir_iadd(b, total_offset, builtins_base_offset);
} else {
nir_def *vertices_offset = intel_nir_tess_field(b, PER_PATCH_SLOTS);
nir_def *vertices_base_offset = nir_iadd_imm(
b, vertices_offset,
vue_map->varying_to_slot[varying] - vue_map->num_per_patch_slots);
total_offset = nir_iadd(b, total_offset, vertices_base_offset);
}
nir_intrinsic_set_base(intrin, 0);
}
nir_src_rewrite(offset, total_offset);
/* Putting an address into offset_src requires that NIR validation of
* IO intrinsics is disabled.
*/
io_sem.no_validate = 1;
nir_intrinsic_set_io_semantics(intrin, io_sem);
}
return true;
}
static bool
remap_non_header_patch_urb_offsets(nir_shader *nir, const struct intel_vue_map *vue_map)
{
return nir_shader_intrinsics_pass(nir, remap_patch_urb_offsets_instr,
nir_metadata_control_flow, (void *)vue_map);
}
/* Replace store_per_view_output to plain store_output, mapping the view index
* to IO offset. Because we only use per-view outputs for position, the offset
* pitch is always 1. */
static bool
lower_per_view_outputs(nir_builder *b,
nir_intrinsic_instr *intrin,
UNUSED void *cb_data)
{
if (intrin->intrinsic != nir_intrinsic_store_per_view_output &&
intrin->intrinsic != nir_intrinsic_load_per_view_output)
return false;
b->cursor = nir_before_instr(&intrin->instr);
nir_src *view_index = nir_get_io_arrayed_index_src(intrin);
nir_src *offset = nir_get_io_offset_src(intrin);
nir_def *new_offset = nir_iadd(b, view_index->ssa, offset->ssa);
nir_intrinsic_instr *new;
if (intrin->intrinsic == nir_intrinsic_store_per_view_output)
new = nir_store_output(b, intrin->src[0].ssa, new_offset);
else {
nir_def *new_def = nir_load_output(b, intrin->def.num_components,
intrin->def.bit_size, new_offset);
new = nir_def_as_intrinsic(new_def);
}
nir_intrinsic_set_base(new, nir_intrinsic_base(intrin));
nir_intrinsic_set_range(new, nir_intrinsic_range(intrin));
nir_intrinsic_set_write_mask(new, nir_intrinsic_write_mask(intrin));
nir_intrinsic_set_component(new, nir_intrinsic_component(intrin));
nir_intrinsic_set_src_type(new, nir_intrinsic_src_type(intrin));
nir_io_semantics sem = nir_intrinsic_io_semantics(intrin);
/* the meaning of the offset src is different for brw */
sem.no_validate = 1;
nir_intrinsic_set_io_semantics(new, sem);
if (intrin->intrinsic == nir_intrinsic_load_per_view_output)
nir_def_rewrite_uses(&intrin->def, &new->def);
nir_instr_remove(&intrin->instr);
return true;
}
static bool
brw_nir_lower_per_view_outputs(nir_shader *nir)
{
return nir_shader_intrinsics_pass(nir, lower_per_view_outputs,
nir_metadata_control_flow,
NULL);
}
void
brw_nir_lower_vs_inputs(nir_shader *nir)
{
/* Start with the location of the variable's base. */
nir_foreach_shader_in_variable(var, nir)
var->data.driver_location = var->data.location;
/* Now use nir_lower_io to walk dereference chains. Attribute arrays are
* loaded as one vec4 or dvec4 per element (or matrix column), depending on
* whether it is a double-precision type or not.
*/
NIR_PASS(_, nir, nir_lower_io, nir_var_shader_in, type_size_vec4,
nir_lower_io_lower_64bit_to_32_new);
/* This pass needs actual constants */
NIR_PASS(_, nir, nir_opt_constant_folding);
NIR_PASS(_, nir, nir_io_add_const_offset_to_base, nir_var_shader_in);
/* Update shader_info::dual_slot_inputs */
nir_shader_gather_info(nir, nir_shader_get_entrypoint(nir));
/* The last step is to remap VERT_ATTRIB_* to actual registers */
/* Whether or not we have any system generated values. gl_DrawID is not
* included here as it lives in its own vec4.
*/
const bool has_sgvs =
BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_FIRST_VERTEX) ||
BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_BASE_INSTANCE) ||
BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_VERTEX_ID_ZERO_BASE) ||
BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_INSTANCE_ID);
const unsigned num_inputs = util_bitcount64(nir->info.inputs_read) +
util_bitcount64(nir->info.inputs_read & nir->info.dual_slot_inputs);
/* In the following loop, the intrinsic base value is the offset in
* register slots (2 slots can make up in single input for double/64bit
* values). The io_semantics location field is the offset in terms of
* attributes.
*/
nir_foreach_function_impl(impl, nir) {
nir_builder b = nir_builder_create(impl);
nir_foreach_block(block, impl) {
nir_foreach_instr_safe(instr, block) {
if (instr->type != nir_instr_type_intrinsic)
continue;
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
switch (intrin->intrinsic) {
case nir_intrinsic_load_first_vertex:
case nir_intrinsic_load_base_instance:
case nir_intrinsic_load_vertex_id_zero_base:
case nir_intrinsic_load_instance_id:
case nir_intrinsic_load_is_indexed_draw:
case nir_intrinsic_load_draw_id: {
b.cursor = nir_after_instr(&intrin->instr);
/* gl_VertexID and friends are stored by the VF as the last
* vertex element. We convert them to load_input intrinsics at
* the right location.
*/
nir_intrinsic_instr *load =
nir_intrinsic_instr_create(nir, nir_intrinsic_load_input);
load->src[0] = nir_src_for_ssa(nir_imm_int(&b, 0));
unsigned input_offset = 0;
unsigned location = BRW_SVGS_VE_INDEX;
switch (intrin->intrinsic) {
case nir_intrinsic_load_first_vertex:
nir_intrinsic_set_component(load, 0);
break;
case nir_intrinsic_load_base_instance:
nir_intrinsic_set_component(load, 1);
break;
case nir_intrinsic_load_vertex_id_zero_base:
nir_intrinsic_set_component(load, 2);
break;
case nir_intrinsic_load_instance_id:
nir_intrinsic_set_component(load, 3);
break;
case nir_intrinsic_load_draw_id:
case nir_intrinsic_load_is_indexed_draw:
/* gl_DrawID and IsIndexedDraw are stored right after
* gl_VertexID and friends if any of them exist.
*/
input_offset += has_sgvs ? 1 : 0;
location = BRW_DRAWID_VE_INDEX;
if (intrin->intrinsic == nir_intrinsic_load_draw_id)
nir_intrinsic_set_component(load, 0);
else
nir_intrinsic_set_component(load, 1);
break;
default:
UNREACHABLE("Invalid system value intrinsic");
}
/* Position the value behind the app's inputs, for base we
* account for the double inputs, for the io_semantics
* location, it's just the input count.
*/
nir_intrinsic_set_base(load, num_inputs + input_offset);
struct nir_io_semantics io = {
.location = VERT_ATTRIB_GENERIC0 + location,
.num_slots = 1,
};
nir_intrinsic_set_io_semantics(load, io);
load->num_components = 1;
nir_def_init(&load->instr, &load->def, 1, 32);
nir_builder_instr_insert(&b, &load->instr);
nir_def_replace(&intrin->def, &load->def);
break;
}
case nir_intrinsic_load_input: {
/* Attributes come in a contiguous block, ordered by their
* gl_vert_attrib value. That means we can compute the slot
* number for an attribute by masking out the enabled attributes
* before it and counting the bits.
*/
const struct nir_io_semantics io =
nir_intrinsic_io_semantics(intrin);
const int attr = nir_intrinsic_base(intrin);
const int slot = util_bitcount64(nir->info.inputs_read &
BITFIELD64_MASK(attr)) +
util_bitcount64(nir->info.dual_slot_inputs &
BITFIELD64_MASK(attr)) +
io.high_dvec2;
nir_intrinsic_set_base(intrin, slot);
break;
}
default:
break; /* Nothing to do */
}
}
}
}
}
void
brw_nir_lower_vue_inputs(nir_shader *nir,
const struct intel_vue_map *vue_map)
{
nir_foreach_shader_in_variable(var, nir)
var->data.driver_location = var->data.location;
/* Inputs are stored in vec4 slots, so use type_size_vec4(). */
NIR_PASS(_, nir, nir_lower_io, nir_var_shader_in, type_size_vec4,
nir_lower_io_lower_64bit_to_32);
/* This pass needs actual constants */
NIR_PASS(_, nir, nir_opt_constant_folding);
NIR_PASS(_, nir, nir_io_add_const_offset_to_base, nir_var_shader_in);
nir_foreach_function_impl(impl, nir) {
nir_foreach_block(block, impl) {
nir_foreach_instr(instr, block) {
if (instr->type != nir_instr_type_intrinsic)
continue;
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
if (intrin->intrinsic == nir_intrinsic_load_input ||
intrin->intrinsic == nir_intrinsic_load_per_vertex_input) {
/* Offset 0 is the VUE header, which contains
* VARYING_SLOT_LAYER [.y], VARYING_SLOT_VIEWPORT [.z], and
* VARYING_SLOT_PSIZ [.w].
*/
int varying = nir_intrinsic_base(intrin);
int vue_slot;
switch (varying) {
case VARYING_SLOT_PSIZ:
nir_intrinsic_set_base(intrin, 0);
nir_intrinsic_set_component(intrin, 3);
break;
default:
vue_slot = vue_map->varying_to_slot[varying];
assert(vue_slot != -1);
nir_intrinsic_set_base(intrin, vue_slot);
break;
}
}
}
}
}
}
void
brw_nir_lower_tes_inputs(nir_shader *nir, const struct intel_vue_map *vue_map)
{
nir_foreach_shader_in_variable(var, nir)
var->data.driver_location = var->data.location;
NIR_PASS(_, nir, nir_lower_io, nir_var_shader_in, type_size_vec4,
nir_lower_io_lower_64bit_to_32);
/* Run add_const_offset_to_base to allow update base/io_semantic::location
* for the remapping pass to look into the VUE mapping.
*/
NIR_PASS(_, nir, nir_opt_constant_folding);
NIR_PASS(_, nir, nir_io_add_const_offset_to_base, nir_var_shader_in);
NIR_PASS(_, nir, remap_non_header_patch_urb_offsets, vue_map);
NIR_PASS(_, nir, remap_tess_header_values, nir->info.tess._primitive_mode);
/* remap_non_header_patch_urb_offsets can add constant math into the
* shader, just fold it for the backend.
*/
NIR_PASS(_, nir, nir_opt_algebraic);
NIR_PASS(_, nir, nir_opt_constant_folding);
NIR_PASS(_, nir, nir_io_add_const_offset_to_base, nir_var_shader_in);
}
static bool
lower_barycentric_per_sample(nir_builder *b,
nir_intrinsic_instr *intrin,
UNUSED void *cb_data)
{
if (intrin->intrinsic != nir_intrinsic_load_barycentric_pixel &&
intrin->intrinsic != nir_intrinsic_load_barycentric_centroid)
return false;
b->cursor = nir_before_instr(&intrin->instr);
nir_def *centroid =
nir_load_barycentric(b, nir_intrinsic_load_barycentric_sample,
nir_intrinsic_interp_mode(intrin));
nir_def_replace(&intrin->def, centroid);
return true;
}
/**
* Convert interpolateAtOffset() offsets from [-0.5, +0.5] floating point
* offsets to integer [-8, +7] offsets (in units of 1/16th of a pixel).
*
* We clamp to +7/16 on the upper end of the range, since +0.5 isn't
* representable in a S0.4 value; a naive conversion would give us -8/16,
* which is the opposite of what was intended.
*
* This is allowed by GL_ARB_gpu_shader5's quantization rules:
*
* "Not all values of <offset> may be supported; x and y offsets may
* be rounded to fixed-point values with the number of fraction bits
* given by the implementation-dependent constant
* FRAGMENT_INTERPOLATION_OFFSET_BITS."
*/
static bool
lower_barycentric_at_offset(nir_builder *b, nir_intrinsic_instr *intrin,
void *data)
{
if (intrin->intrinsic != nir_intrinsic_load_barycentric_at_offset)
return false;
b->cursor = nir_before_instr(&intrin->instr);
assert(intrin->src[0].ssa);
nir_def *offset =
nir_imin(b, nir_imm_int(b, 7),
nir_f2i32(b, nir_fmul_imm(b, intrin->src[0].ssa, 16)));
nir_src_rewrite(&intrin->src[0], offset);
return true;
}
static bool
lower_indirect_primitive_id(nir_builder *b,
nir_intrinsic_instr *intrin,
void *data)
{
if (intrin->intrinsic != nir_intrinsic_load_per_primitive_input)
return false;
if (nir_intrinsic_io_semantics(intrin).location != VARYING_SLOT_PRIMITIVE_ID)
return false;
nir_def *indirect_primitive_id = data;
nir_def_replace(&intrin->def, indirect_primitive_id);
return true;
}
bool
brw_needs_vertex_attributes_bypass(const nir_shader *shader)
{
/* Even if there are no actual per-vertex inputs, if the fragment
* shader uses BaryCoord*, we need to set everything accordingly
* so the barycentrics don't get reordered.
*/
if (BITSET_TEST(shader->info.system_values_read, SYSTEM_VALUE_BARYCENTRIC_LINEAR_COORD) ||
BITSET_TEST(shader->info.system_values_read, SYSTEM_VALUE_BARYCENTRIC_PERSP_COORD))
return true;
nir_foreach_shader_in_variable(var, shader) {
if (var->data.per_vertex)
return true;
}
return false;
}
/* Build the per-vertex offset into the attribute section of the per-vertex
* thread payload. There is always one GRF of padding in front.
*
* The computation is fairly complicated due to the layout of the payload. You
* can find a description of the layout in brw_compile_fs.cpp
* brw_assign_urb_setup().
*
* Gfx < 20 packs 2 slots per GRF (hence the %/ 2 in the formula)
* Gfx >= 20 pack 5 slots per GRF (hence the %/ 5 in the formula)
*
* Then an additional offset needs to added to handle how multiple polygon
* data is interleaved.
*/
nir_def *
brw_nir_vertex_attribute_offset(nir_builder *b,
nir_def *attr_idx,
const struct intel_device_info *devinfo)
{
nir_def *max_poly = nir_load_max_polygon_intel(b);
return devinfo->ver >= 20 ?
nir_iadd(b,
nir_imul(b, nir_udiv_imm(b, attr_idx, 5), nir_imul_imm(b, max_poly, 64)),
nir_imul_imm(b, nir_umod_imm(b, attr_idx, 5), 12)) :
nir_iadd_imm(
b,
nir_iadd(
b,
nir_imul(b, nir_udiv_imm(b, attr_idx, 2), nir_imul_imm(b, max_poly, 32)),
nir_imul_imm(b, nir_umod_imm(b, attr_idx, 2), 16)),
12);
}
static nir_block *
fragment_top_block_or_after_wa_18019110168(nir_function_impl *impl)
{
nir_if *first_if =
nir_block_get_following_if(nir_start_block(impl));
nir_block *post_wa_18019110168_block = NULL;
if (first_if) {
nir_block *last_if_block = nir_if_last_then_block(first_if);
nir_foreach_block_in_cf_node(block, &first_if->cf_node) {
nir_foreach_instr(instr, block) {
if (instr->type != nir_instr_type_intrinsic)
continue;
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
if (intrin->intrinsic == nir_intrinsic_store_per_primitive_payload_intel) {
post_wa_18019110168_block = last_if_block->successors[0];
break;
}
}
if (post_wa_18019110168_block)
break;
}
}
return post_wa_18019110168_block ?
post_wa_18019110168_block : nir_start_block(impl);
}
void
brw_nir_lower_fs_inputs(nir_shader *nir,
const struct intel_device_info *devinfo,
const struct brw_wm_prog_key *key)
{
/* Always pull the PrimitiveID from the per-primitive block if mesh can be
* involved.
*/
if (key->mesh_input != INTEL_NEVER) {
nir_foreach_shader_in_variable(var, nir) {
if (var->data.location == VARYING_SLOT_PRIMITIVE_ID) {
var->data.per_primitive = true;
nir->info.per_primitive_inputs |= VARYING_BIT_PRIMITIVE_ID;
}
}
}
nir_def *indirect_primitive_id = NULL;
if (key->base.vue_layout == INTEL_VUE_LAYOUT_SEPARATE_MESH &&
(nir->info.inputs_read & VARYING_BIT_PRIMITIVE_ID)) {
nir_builder _b = nir_builder_at(
nir_before_block(
fragment_top_block_or_after_wa_18019110168(
nir_shader_get_entrypoint(nir)))), *b = &_b;
nir_def *index = nir_ubitfield_extract_imm(
b,
nir_load_fs_msaa_intel(b),
INTEL_MSAA_FLAG_PRIMITIVE_ID_INDEX_OFFSET,
INTEL_MSAA_FLAG_PRIMITIVE_ID_INDEX_SIZE);
nir_def *per_vertex_offset =
nir_iadd_imm(
b,
brw_nir_vertex_attribute_offset(
b, nir_imul_imm(b, index, 4), devinfo),
devinfo->grf_size);
/* When the attribute index is INTEL_MSAA_FLAG_PRIMITIVE_ID_MESH_INDEX,
* it means the value is coming from the per-primitive block. We always
* lay out PrimitiveID at offset 0 in the per-primitive block.
*/
nir_def *attribute_offset = nir_bcsel(
b,
nir_ieq_imm(b, index, INTEL_MSAA_FLAG_PRIMITIVE_ID_INDEX_MESH),
nir_imm_int(b, 0), per_vertex_offset);
indirect_primitive_id =
nir_read_attribute_payload_intel(b, attribute_offset);
}
nir_foreach_shader_in_variable(var, nir) {
var->data.driver_location = var->data.location;
if (var->data.interpolation == INTERP_MODE_NONE)
var->data.interpolation = INTERP_MODE_SMOOTH;
}
NIR_PASS(_, nir, nir_lower_io,
nir_var_shader_in, type_size_vec4,
nir_lower_io_lower_64bit_to_32 |
nir_lower_io_use_interpolated_input_intrinsics);
if (devinfo->ver >= 11)
NIR_PASS(_, nir, nir_lower_interpolation, ~0);
if (brw_needs_vertex_attributes_bypass(nir))
brw_nir_lower_fs_barycentrics(nir);
if (key->multisample_fbo == INTEL_NEVER) {
NIR_PASS(_, nir, nir_lower_single_sampled);
} else if (key->persample_interp == INTEL_ALWAYS) {
NIR_PASS(_, nir, nir_shader_intrinsics_pass,
lower_barycentric_per_sample,
nir_metadata_control_flow,
NULL);
}
if (devinfo->ver < 20) {
NIR_PASS(_, nir, nir_shader_intrinsics_pass,
lower_barycentric_at_offset,
nir_metadata_control_flow,
NULL);
}
if (indirect_primitive_id != NULL) {
NIR_PASS(_, nir, nir_shader_intrinsics_pass,
lower_indirect_primitive_id,
nir_metadata_control_flow,
indirect_primitive_id);
}
/* This pass needs actual constants */
NIR_PASS(_, nir, nir_opt_constant_folding);
NIR_PASS(_, nir, nir_io_add_const_offset_to_base, nir_var_shader_in);
}
void
brw_nir_lower_vue_outputs(nir_shader *nir)
{
nir_foreach_shader_out_variable(var, nir) {
var->data.driver_location = var->data.location;
}
NIR_PASS(_, nir, nir_lower_io, nir_var_shader_out, type_size_vec4,
nir_lower_io_lower_64bit_to_32);
NIR_PASS(_, nir, brw_nir_lower_per_view_outputs);
}
void
brw_nir_lower_tcs_outputs(nir_shader *nir,
const struct intel_device_info *devinfo,
const struct intel_vue_map *vue_map,
enum tess_primitive_mode tes_primitive_mode)
{
nir_foreach_shader_out_variable(var, nir) {
var->data.driver_location = var->data.location;
}
NIR_PASS(_, nir, nir_lower_io, nir_var_shader_out, type_size_vec4,
nir_lower_io_lower_64bit_to_32);
/* Run add_const_offset_to_base to allow update base/io_semantic::location
* for the remapping pass to look into the VUE mapping.
*/
NIR_PASS(_, nir, nir_opt_constant_folding);
NIR_PASS(_, nir, nir_io_add_const_offset_to_base, nir_var_shader_out);
NIR_PASS(_, nir, remap_non_header_patch_urb_offsets, vue_map);
if (tes_primitive_mode != TESS_PRIMITIVE_UNSPECIFIED)
NIR_PASS(_, nir, remap_tess_header_values, tes_primitive_mode);
else
NIR_PASS(_, nir, remap_tess_header_values_dynamic, devinfo);
/* remap_non_header_patch_urb_offsets can add constant math into the
* shader, just fold it for the backend.
*/
NIR_PASS(_, nir, nir_opt_constant_folding);
NIR_PASS(_, nir, nir_io_add_const_offset_to_base, nir_var_shader_out);
}
void
brw_nir_lower_fs_outputs(nir_shader *nir)
{
nir_foreach_shader_out_variable(var, nir) {
var->data.driver_location =
SET_FIELD(var->data.index, BRW_NIR_FRAG_OUTPUT_INDEX) |
SET_FIELD(var->data.location, BRW_NIR_FRAG_OUTPUT_LOCATION);
}
NIR_PASS(_, nir, nir_lower_io, nir_var_shader_out, type_size_vec4, 0);
}
static bool
tag_speculative_access(nir_builder *b,
nir_intrinsic_instr *intrin,
void *unused)
{
if (intrin->intrinsic == nir_intrinsic_load_ubo &&
brw_nir_ubo_surface_index_is_pushable(intrin->src[0])) {
nir_intrinsic_set_access(intrin, ACCESS_CAN_SPECULATE |
nir_intrinsic_access(intrin));
return true;
}
return false;
}
static bool
brw_nir_tag_speculative_access(nir_shader *nir)
{
return nir_shader_intrinsics_pass(nir, tag_speculative_access,
nir_metadata_all, NULL);
}
#define OPT(pass, ...) ({ \
bool this_progress = false; \
NIR_PASS(this_progress, nir, pass, ##__VA_ARGS__); \
if (this_progress) \
progress = true; \
this_progress; \
})
#define LOOP_OPT(pass, ...) ({ \
const unsigned long this_line = __LINE__; \
bool this_progress = false; \
if (opt_line == this_line) \
break; \
NIR_PASS(this_progress, nir, pass, ##__VA_ARGS__); \
if (this_progress) { \
progress = true; \
opt_line = this_line; \
} \
this_progress; \
})
#define LOOP_OPT_NOT_IDEMPOTENT(pass, ...) ({ \
bool this_progress = false; \
NIR_PASS(this_progress, nir, pass, ##__VA_ARGS__); \
if (this_progress) { \
progress = true; \
opt_line = 0; \
} \
this_progress; \
})
void
brw_nir_optimize(nir_shader *nir,
const struct intel_device_info *devinfo)
{
bool progress;
unsigned lower_flrp =
(nir->options->lower_flrp16 ? 16 : 0) |
(nir->options->lower_flrp32 ? 32 : 0) |
(nir->options->lower_flrp64 ? 64 : 0);
unsigned long opt_line = 0;
do {
progress = false;
/* This pass is causing problems with types used by OpenCL :
* https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/13955
*
* Running with it disabled made no difference in the resulting assembly
* code.
*/
if (nir->info.stage != MESA_SHADER_KERNEL)
LOOP_OPT(nir_split_array_vars, nir_var_function_temp);
LOOP_OPT(nir_shrink_vec_array_vars, nir_var_function_temp);
LOOP_OPT(nir_opt_deref);
if (LOOP_OPT(nir_opt_memcpy))
LOOP_OPT(nir_split_var_copies);
LOOP_OPT(nir_lower_vars_to_ssa);
if (!nir->info.var_copies_lowered) {
/* Only run this pass if nir_lower_var_copies was not called
* yet. That would lower away any copy_deref instructions and we
* don't want to introduce any more.
*/
LOOP_OPT(nir_opt_find_array_copies);
}
LOOP_OPT(nir_opt_copy_prop_vars);
LOOP_OPT(nir_opt_dead_write_vars);
LOOP_OPT(nir_opt_combine_stores, nir_var_all);
LOOP_OPT(nir_opt_ray_queries);
LOOP_OPT(nir_opt_ray_query_ranges);
LOOP_OPT(nir_lower_alu_to_scalar, NULL, NULL);
LOOP_OPT(nir_copy_prop);
LOOP_OPT(nir_lower_phis_to_scalar, NULL, NULL);
LOOP_OPT(nir_copy_prop);
LOOP_OPT(nir_opt_dce);
LOOP_OPT(nir_opt_cse);
LOOP_OPT(nir_opt_combine_stores, nir_var_all);
/* Passing 0 to the peephole select pass causes it to convert
* if-statements that contain only move instructions in the branches
* regardless of the count.
*
* Passing 1 to the peephole select pass causes it to convert
* if-statements that contain at most a single ALU instruction (total)
* in both branches. Before Gfx6, some math instructions were
* prohibitively expensive and the results of compare operations need an
* extra resolve step. For these reasons, this pass is more harmful
* than good on those platforms.
*
* For indirect loads of uniforms (push constants), we assume that array
* indices will nearly always be in bounds and the cost of the load is
* low. Therefore there shouldn't be a performance benefit to avoid it.
*/
nir_opt_peephole_select_options peephole_select_options = {
.limit = 0,
.indirect_load_ok = true,
};
LOOP_OPT(nir_opt_peephole_select, &peephole_select_options);
peephole_select_options.limit = 8;
peephole_select_options.expensive_alu_ok = true;
LOOP_OPT(nir_opt_peephole_select, &peephole_select_options);
LOOP_OPT(nir_opt_intrinsics);
LOOP_OPT(nir_opt_idiv_const, 32);
LOOP_OPT_NOT_IDEMPOTENT(nir_opt_algebraic);
LOOP_OPT(nir_opt_generate_bfi);
LOOP_OPT(nir_opt_reassociate_bfi);
LOOP_OPT(nir_lower_constant_convert_alu_types);
LOOP_OPT(nir_opt_constant_folding);
if (lower_flrp != 0) {
LOOP_OPT(nir_lower_flrp, lower_flrp, false /* always_precise */);
/* Nothing should rematerialize any flrps, so we only need to do this
* lowering once.
*/
lower_flrp = 0;
}
LOOP_OPT(nir_opt_dead_cf);
if (LOOP_OPT(nir_opt_loop)) {
/* If nir_opt_loop makes progress, then we need to clean
* things up if we want any hope of nir_opt_if or nir_opt_loop_unroll
* to make progress.
*/
LOOP_OPT(nir_copy_prop);
LOOP_OPT(nir_opt_dce);
}
LOOP_OPT_NOT_IDEMPOTENT(nir_opt_if, nir_opt_if_optimize_phi_true_false);
nir_opt_peephole_select_options peephole_discard_options = {
.limit = 0,
.discard_ok = true,
};
LOOP_OPT(nir_opt_peephole_select, &peephole_discard_options);
if (nir->options->max_unroll_iterations != 0) {
LOOP_OPT_NOT_IDEMPOTENT(nir_opt_loop_unroll);
}
LOOP_OPT(nir_opt_remove_phis);
LOOP_OPT(nir_opt_gcm, false);
LOOP_OPT(nir_opt_undef);
LOOP_OPT(nir_lower_pack);
} while (progress);
/* Workaround Gfxbench unused local sampler variable which will trigger an
* assert in the opt_large_constants pass.
*/
OPT(nir_remove_dead_variables, nir_var_function_temp, NULL);
}
static unsigned
lower_bit_size_callback(const nir_instr *instr, void *data)
{
const struct brw_compiler *compiler = data;
switch (instr->type) {
case nir_instr_type_alu: {
nir_alu_instr *alu = nir_instr_as_alu(instr);
switch (alu->op) {
case nir_op_bit_count:
case nir_op_ufind_msb:
case nir_op_ifind_msb:
case nir_op_find_lsb:
/* These are handled specially because the destination is always
* 32-bit and so the bit size of the instruction is given by the
* source.
*/
return alu->src[0].src.ssa->bit_size >= 32 ? 0 : 32;
default:
break;
}
if (alu->def.bit_size >= 32)
return 0;
/* Note: nir_op_iabs and nir_op_ineg are not lowered here because the
* 8-bit ABS or NEG instruction should eventually get copy propagated
* into the MOV that does the type conversion. This results in far
* fewer MOV instructions.
*/
switch (alu->op) {
case nir_op_bitfield_reverse:
return alu->def.bit_size != 32 ? 32 : 0;
case nir_op_idiv:
case nir_op_imod:
case nir_op_irem:
case nir_op_udiv:
case nir_op_umod:
/* Gfx12.5+ lacks integer division instructions. As nir_lower_idiv is
* far more efficient for int8/int16 divisions, we do not lower here.
*
* Older platforms have idiv instructions only for int32, so lower.
*/
return compiler->devinfo->verx10 >= 125 ? 0 : 32;
case nir_op_fceil:
case nir_op_ffloor:
case nir_op_ffract:
case nir_op_fround_even:
case nir_op_ftrunc:
return 32;
case nir_op_frcp:
case nir_op_frsq:
case nir_op_fsqrt:
case nir_op_fpow:
case nir_op_fexp2:
case nir_op_flog2:
case nir_op_fsin:
case nir_op_fcos:
return 0;
case nir_op_isign:
UNREACHABLE("Should have been lowered by nir_opt_algebraic.");
default:
if (nir_op_infos[alu->op].num_inputs >= 2 &&
alu->def.bit_size == 8)
return 16;
if (nir_alu_instr_is_comparison(alu) &&
alu->src[0].src.ssa->bit_size == 8)
return 16;
return 0;
}
break;
}
case nir_instr_type_intrinsic: {
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
switch (intrin->intrinsic) {
case nir_intrinsic_read_invocation:
case nir_intrinsic_read_first_invocation:
case nir_intrinsic_vote_feq:
case nir_intrinsic_vote_ieq:
case nir_intrinsic_shuffle:
case nir_intrinsic_shuffle_xor:
case nir_intrinsic_shuffle_up:
case nir_intrinsic_shuffle_down:
case nir_intrinsic_quad_broadcast:
case nir_intrinsic_quad_swap_horizontal:
case nir_intrinsic_quad_swap_vertical:
case nir_intrinsic_quad_swap_diagonal:
if (intrin->src[0].ssa->bit_size == 8)
return 16;
return 0;
case nir_intrinsic_reduce:
case nir_intrinsic_inclusive_scan:
case nir_intrinsic_exclusive_scan:
/* There are a couple of register region issues that make things
* complicated for 8-bit types:
*
* 1. Only raw moves are allowed to write to a packed 8-bit
* destination.
* 2. If we use a strided destination, the efficient way to do
* scan operations ends up using strides that are too big to
* encode in an instruction.
*
* To get around these issues, we just do all 8-bit scan operations
* in 16 bits. It's actually fewer instructions than what we'd have
* to do if we were trying to do it in native 8-bit types and the
* results are the same once we truncate to 8 bits at the end.
*/
if (intrin->def.bit_size == 8)
return 16;
return 0;
default:
return 0;
}
break;
}
case nir_instr_type_phi: {
nir_phi_instr *phi = nir_instr_as_phi(instr);
if (phi->def.bit_size == 8)
return 16;
return 0;
}
default:
return 0;
}
}
/* On gfx12.5+, if the offsets are not both constant and in the {-8,7} range,
* we will have nir_lower_tex() lower the source offset by returning true from
* this filter function.
*/
static bool
lower_xehp_tg4_offset_filter(const nir_instr *instr, UNUSED const void *data)
{
if (instr->type != nir_instr_type_tex)
return false;
nir_tex_instr *tex = nir_instr_as_tex(instr);
if (tex->op != nir_texop_tg4)
return false;
int offset_index = nir_tex_instr_src_index(tex, nir_tex_src_offset);
if (offset_index < 0)
return false;
/* When we have LOD & offset, we can pack both (see
* intel_nir_lower_texture.c pack_lod_or_bias_and_offset)
*/
bool has_lod =
nir_tex_instr_src_index(tex, nir_tex_src_lod) != -1 ||
nir_tex_instr_src_index(tex, nir_tex_src_bias) != -1;
if (has_lod)
return false;
if (!nir_src_is_const(tex->src[offset_index].src))
return true;
int64_t offset_x = nir_src_comp_as_int(tex->src[offset_index].src, 0);
int64_t offset_y = nir_src_comp_as_int(tex->src[offset_index].src, 1);
return offset_x < -8 || offset_x > 7 || offset_y < -8 || offset_y > 7;
}
/* Does some simple lowering and runs the standard suite of optimizations
*
* This is intended to be called more-or-less directly after you get the
* shader out of GLSL or some other source. While it is geared towards i965,
* it is not at all generator-specific.
*/
void
brw_preprocess_nir(const struct brw_compiler *compiler, nir_shader *nir,
const struct brw_nir_compiler_opts *opts)
{
const struct intel_device_info *devinfo = compiler->devinfo;
UNUSED bool progress; /* Written by OPT */
nir_validate_ssa_dominance(nir, "before brw_preprocess_nir");
OPT(nir_lower_frexp);
OPT(nir_lower_alu_to_scalar, NULL, NULL);
if (nir->info.stage == MESA_SHADER_GEOMETRY)
OPT(nir_lower_gs_intrinsics, 0);
/* See also brw_nir_workarounds.py */
if (compiler->precise_trig &&
!(devinfo->ver >= 10 || devinfo->platform == INTEL_PLATFORM_KBL))
OPT(brw_nir_apply_trig_workarounds);
/* This workaround existing for performance reasons. Since it requires not
* setting RENDER_SURFACE_STATE::SurfaceArray when the array length is 1,
* we're loosing the HW robustness feature in that case.
*
* So when robust image access is enabled, just avoid the workaround.
*/
if (intel_needs_workaround(devinfo, 1806565034) && !opts->robust_image_access)
OPT(intel_nir_clamp_image_1d_2d_array_sizes);
OPT(nir_normalize_cubemap_coords);
OPT(nir_lower_global_vars_to_local);
OPT(nir_split_var_copies);
OPT(nir_split_struct_vars, nir_var_function_temp);
brw_nir_optimize(nir, devinfo);
struct nir_opt_16bit_tex_image_options options = {
.rounding_mode = nir_rounding_mode_undef,
.opt_tex_dest_types = nir_type_float | nir_type_int | nir_type_uint,
};
OPT(nir_opt_16bit_tex_image, &options);
OPT(nir_lower_doubles, opts->softfp64, nir->options->lower_doubles_options);
if (OPT(nir_lower_int64_float_conversions)) {
OPT(nir_opt_algebraic);
OPT(nir_lower_doubles, opts->softfp64,
nir->options->lower_doubles_options);
}
OPT(nir_lower_bit_size, lower_bit_size_callback, (void *)compiler);
/* Lower a bunch of stuff */
OPT(nir_lower_var_copies);
/* This needs to be run after the first optimization pass but before we
* lower indirect derefs away
*/
OPT(nir_opt_large_constants, NULL, 32);
OPT(nir_lower_load_const_to_scalar);
OPT(nir_lower_system_values);
nir_lower_compute_system_values_options lower_csv_options = {
.has_base_workgroup_id = nir->info.stage == MESA_SHADER_COMPUTE,
};
OPT(nir_lower_compute_system_values, &lower_csv_options);
const nir_lower_subgroups_options subgroups_options = {
.subgroup_size = brw_nir_api_subgroup_size(nir, 0),
.ballot_bit_size = 32,
.ballot_components = 1,
.lower_to_scalar = true,
.lower_relative_shuffle = true,
.lower_quad_broadcast_dynamic = true,
.lower_elect = true,
.lower_inverse_ballot = true,
.lower_rotate_to_shuffle = true,
};
OPT(nir_lower_subgroups, &subgroups_options);
nir_variable_mode indirect_mask =
brw_nir_no_indirect_mask(compiler, nir->info.stage);
OPT(nir_lower_indirect_derefs, indirect_mask, UINT32_MAX);
/* Even in cases where we can handle indirect temporaries via scratch, we
* it can still be expensive. Lower indirects on small arrays to
* conditional load/stores.
*
* The threshold of 16 was chosen semi-arbitrarily. The idea is that an
* indirect on an array of 16 elements is about 30 instructions at which
* point, you may be better off doing a send. With a SIMD8 program, 16
* floats is 1/8 of the entire register file. Any array larger than that
* is likely to cause pressure issues. Also, this value is sufficiently
* high that the benchmarks known to suffer from large temporary array
* issues are helped but nothing else in shader-db is hurt except for maybe
* that one kerbal space program shader.
*/
if (!(indirect_mask & nir_var_function_temp))
OPT(nir_lower_indirect_derefs, nir_var_function_temp, 16);
/* Lower array derefs of vectors for SSBO and UBO loads. For both UBOs and
* SSBOs, our back-end is capable of loading an entire vec4 at a time and
* we would like to take advantage of that whenever possible regardless of
* whether or not the app gives us full loads. This should allow the
* optimizer to combine UBO and SSBO load operations and save us some send
* messages.
*/
OPT(nir_lower_array_deref_of_vec,
nir_var_mem_ubo | nir_var_mem_ssbo, NULL,
nir_lower_direct_array_deref_of_vec_load);
/* Clamp load_per_vertex_input of the TCS stage so that we do not generate
* loads reading out of bounds. We can do this here because we called
* nir_lower_system_values above.
*/
if (nir->info.stage == MESA_SHADER_TESS_CTRL &&
compiler->use_tcs_multi_patch)
OPT(intel_nir_clamp_per_vertex_loads);
/* Get rid of split copies */
brw_nir_optimize(nir, devinfo);
}
static bool
brw_nir_zero_inputs_instr(struct nir_builder *b, nir_intrinsic_instr *intrin,
void *data)
{
if (intrin->intrinsic != nir_intrinsic_load_deref)
return false;
nir_deref_instr *deref = nir_src_as_deref(intrin->src[0]);
if (!nir_deref_mode_is(deref, nir_var_shader_in))
return false;
if (deref->deref_type != nir_deref_type_var)
return false;
nir_variable *var = deref->var;
uint64_t zero_inputs = *(uint64_t *)data;
if (!(BITFIELD64_BIT(var->data.location) & zero_inputs))
return false;
b->cursor = nir_before_instr(&intrin->instr);
nir_def *zero = nir_imm_zero(b, 1, 32);
nir_def_replace(&intrin->def, zero);
return true;
}
static bool
brw_nir_zero_inputs(nir_shader *shader, uint64_t *zero_inputs)
{
return nir_shader_intrinsics_pass(shader, brw_nir_zero_inputs_instr,
nir_metadata_control_flow,
zero_inputs);
}
/* Code for Wa_18019110168 may have created input/output variables beyond
* VARYING_SLOT_MAX and removed uses of variables below VARYING_SLOT_MAX.
* Clean it up, so they all stay below VARYING_SLOT_MAX.
*/
static void
brw_mesh_compact_io(nir_shader *mesh, nir_shader *frag)
{
gl_varying_slot mapping[VARYING_SLOT_MAX] = {0, };
gl_varying_slot cur = VARYING_SLOT_VAR0;
bool compact = false;
nir_foreach_shader_out_variable(var, mesh) {
gl_varying_slot location = var->data.location;
if (location < VARYING_SLOT_VAR0)
continue;
assert(location < ARRAY_SIZE(mapping));
const struct glsl_type *type = var->type;
if (nir_is_arrayed_io(var, MESA_SHADER_MESH)) {
assert(glsl_type_is_array(type));
type = glsl_get_array_element(type);
}
if (mapping[location])
continue;
unsigned num_slots = glsl_count_attribute_slots(type, false);
compact |= location + num_slots > VARYING_SLOT_MAX;
mapping[location] = cur;
cur += num_slots;
}
if (!compact)
return;
/* The rest of this function should be hit only for Wa_18019110168. */
nir_foreach_shader_out_variable(var, mesh) {
gl_varying_slot location = var->data.location;
if (location < VARYING_SLOT_VAR0)
continue;
location = mapping[location];
if (location == 0)
continue;
var->data.location = location;
}
nir_foreach_shader_in_variable(var, frag) {
gl_varying_slot location = var->data.location;
if (location < VARYING_SLOT_VAR0)
continue;
location = mapping[location];
if (location == 0)
continue;
var->data.location = location;
}
nir_shader_gather_info(mesh, nir_shader_get_entrypoint(mesh));
nir_shader_gather_info(frag, nir_shader_get_entrypoint(frag));
if (should_print_nir(mesh)) {
printf("%s\n", __func__);
nir_print_shader(mesh, stdout);
}
if (should_print_nir(frag)) {
printf("%s\n", __func__);
nir_print_shader(frag, stdout);
}
}
void
brw_nir_link_shaders(const struct brw_compiler *compiler,
nir_shader *producer, nir_shader *consumer)
{
const struct intel_device_info *devinfo = compiler->devinfo;
if (producer->info.stage == MESA_SHADER_MESH &&
consumer->info.stage == MESA_SHADER_FRAGMENT) {
uint64_t fs_inputs = 0, ms_outputs = 0;
/* gl_MeshPerPrimitiveEXT[].gl_ViewportIndex, gl_PrimitiveID and gl_Layer
* are per primitive, but fragment shader does not have them marked as
* such. Add the annotation here.
*/
nir_foreach_shader_in_variable(var, consumer) {
fs_inputs |= BITFIELD64_BIT(var->data.location);
switch (var->data.location) {
case VARYING_SLOT_LAYER:
case VARYING_SLOT_PRIMITIVE_ID:
case VARYING_SLOT_VIEWPORT:
var->data.per_primitive = 1;
break;
default:
continue;
}
}
nir_foreach_shader_out_variable(var, producer)
ms_outputs |= BITFIELD64_BIT(var->data.location);
uint64_t zero_inputs = ~ms_outputs & fs_inputs;
zero_inputs &= VARYING_BIT_LAYER |
VARYING_BIT_VIEWPORT;
if (zero_inputs)
NIR_PASS(_, consumer, brw_nir_zero_inputs, &zero_inputs);
}
nir_lower_io_array_vars_to_elements(producer, consumer);
nir_validate_shader(producer, "after nir_lower_io_arrays_to_elements");
nir_validate_shader(consumer, "after nir_lower_io_arrays_to_elements");
NIR_PASS(_, producer, nir_lower_io_vars_to_scalar, nir_var_shader_out);
NIR_PASS(_, consumer, nir_lower_io_vars_to_scalar, nir_var_shader_in);
brw_nir_optimize(producer, devinfo);
brw_nir_optimize(consumer, devinfo);
if (nir_link_opt_varyings(producer, consumer))
brw_nir_optimize(consumer, devinfo);
NIR_PASS(_, producer, nir_remove_dead_variables, nir_var_shader_out, NULL);
NIR_PASS(_, consumer, nir_remove_dead_variables, nir_var_shader_in, NULL);
if (nir_remove_unused_varyings(producer, consumer)) {
if (should_print_nir(producer)) {
printf("nir_remove_unused_varyings\n");
nir_print_shader(producer, stdout);
}
if (should_print_nir(consumer)) {
printf("nir_remove_unused_varyings\n");
nir_print_shader(consumer, stdout);
}
NIR_PASS(_, producer, nir_lower_global_vars_to_local);
NIR_PASS(_, consumer, nir_lower_global_vars_to_local);
brw_nir_optimize(producer, devinfo);
brw_nir_optimize(consumer, devinfo);
if (producer->info.stage == MESA_SHADER_MESH &&
consumer->info.stage == MESA_SHADER_FRAGMENT) {
brw_mesh_compact_io(producer, consumer);
}
}
NIR_PASS(_, producer, nir_opt_vectorize_io_vars, nir_var_shader_out);
if (producer->info.stage == MESA_SHADER_TESS_CTRL &&
producer->options->vectorize_tess_levels)
NIR_PASS(_, producer, nir_lower_tess_level_array_vars_to_vec);
NIR_PASS(_, producer, nir_opt_combine_stores, nir_var_shader_out);
NIR_PASS(_, consumer, nir_opt_vectorize_io_vars, nir_var_shader_in);
if (producer->info.stage != MESA_SHADER_TESS_CTRL &&
producer->info.stage != MESA_SHADER_MESH &&
producer->info.stage != MESA_SHADER_TASK) {
/* Calling lower_io_to_vector creates output variable writes with
* write-masks. On non-TCS outputs, the back-end can't handle it and we
* need to call nir_lower_io_vars_to_temporaries to get rid of them. This,
* in turn, creates temporary variables and extra copy_deref intrinsics
* that we need to clean up.
*
* Note Mesh/Task don't support I/O as temporaries (I/O is shared
* between whole workgroup, possibly using multiple HW threads). For
* those write-mask in output is handled by I/O lowering.
*/
NIR_PASS(_, producer, nir_lower_io_vars_to_temporaries,
nir_shader_get_entrypoint(producer), true, false);
NIR_PASS(_, producer, nir_lower_global_vars_to_local);
NIR_PASS(_, producer, nir_split_var_copies);
NIR_PASS(_, producer, nir_lower_var_copies);
}
if (producer->info.stage == MESA_SHADER_TASK &&
consumer->info.stage == MESA_SHADER_MESH) {
for (unsigned i = 0; i < 3; ++i)
assert(producer->info.mesh.ts_mesh_dispatch_dimensions[i] <= UINT16_MAX);
nir_lower_compute_system_values_options options = {
.lower_workgroup_id_to_index = true,
.num_workgroups[0] = producer->info.mesh.ts_mesh_dispatch_dimensions[0],
.num_workgroups[1] = producer->info.mesh.ts_mesh_dispatch_dimensions[1],
.num_workgroups[2] = producer->info.mesh.ts_mesh_dispatch_dimensions[2],
/* nir_lower_idiv generates expensive code */
.shortcut_1d_workgroup_id = compiler->devinfo->verx10 >= 125,
};
NIR_PASS(_, consumer, nir_lower_compute_system_values, &options);
}
}
bool
brw_nir_should_vectorize_mem(unsigned align_mul, unsigned align_offset,
unsigned bit_size,
unsigned num_components,
int64_t hole_size,
nir_intrinsic_instr *low,
nir_intrinsic_instr *high,
void *data)
{
/* Don't combine things to generate 64-bit loads/stores. We have to split
* those back into 32-bit ones anyway and UBO loads aren't split in NIR so
* we don't want to make a mess for the back-end.
*/
if (bit_size > 32)
return false;
if (low->intrinsic == nir_intrinsic_load_ubo_uniform_block_intel ||
low->intrinsic == nir_intrinsic_load_ssbo_uniform_block_intel ||
low->intrinsic == nir_intrinsic_load_shared_uniform_block_intel ||
low->intrinsic == nir_intrinsic_load_global_constant_uniform_block_intel) {
if (num_components > 4) {
if (bit_size != 32)
return false;
if (num_components > 32)
return false;
if (hole_size >= 8 * 4)
return false;
}
} else {
/* We can handle at most a vec4 right now. Anything bigger would get
* immediately split by brw_nir_lower_mem_access_bit_sizes anyway.
*/
if (num_components > 4)
return false;
if (hole_size > 4)
return false;
}
const uint32_t align = nir_combined_align(align_mul, align_offset);
if (align < bit_size / 8)
return false;
return true;
}
static
bool combine_all_memory_barriers(nir_intrinsic_instr *a,
nir_intrinsic_instr *b,
void *data)
{
/* Combine control barriers with identical memory semantics. This prevents
* the second barrier generating a spurious, identical fence message as the
* first barrier.
*/
if (nir_intrinsic_memory_modes(a) == nir_intrinsic_memory_modes(b) &&
nir_intrinsic_memory_semantics(a) == nir_intrinsic_memory_semantics(b) &&
nir_intrinsic_memory_scope(a) == nir_intrinsic_memory_scope(b)) {
nir_intrinsic_set_execution_scope(a, MAX2(nir_intrinsic_execution_scope(a),
nir_intrinsic_execution_scope(b)));
return true;
}
/* Only combine pure memory barriers */
if ((nir_intrinsic_execution_scope(a) != SCOPE_NONE) ||
(nir_intrinsic_execution_scope(b) != SCOPE_NONE))
return false;
/* Translation to backend IR will get rid of modes we don't care about, so
* no harm in always combining them.
*
* TODO: While HW has only ACQUIRE|RELEASE fences, we could improve the
* scheduling so that it can take advantage of the different semantics.
*/
nir_intrinsic_set_memory_modes(a, nir_intrinsic_memory_modes(a) |
nir_intrinsic_memory_modes(b));
nir_intrinsic_set_memory_semantics(a, nir_intrinsic_memory_semantics(a) |
nir_intrinsic_memory_semantics(b));
nir_intrinsic_set_memory_scope(a, MAX2(nir_intrinsic_memory_scope(a),
nir_intrinsic_memory_scope(b)));
return true;
}
static nir_mem_access_size_align
get_mem_access_size_align(nir_intrinsic_op intrin, uint8_t bytes,
uint8_t bit_size, uint32_t align_mul, uint32_t align_offset,
bool offset_is_const, enum gl_access_qualifier access,
const void *cb_data)
{
const uint32_t align = nir_combined_align(align_mul, align_offset);
const struct brw_mem_access_cb_data *mem_cb_data =
(struct brw_mem_access_cb_data *)cb_data;
const struct intel_device_info *devinfo = mem_cb_data->devinfo;
switch (intrin) {
case nir_intrinsic_load_ssbo:
case nir_intrinsic_load_shared:
case nir_intrinsic_load_scratch:
/* The offset is constant so we can use a 32-bit load and just shift it
* around as needed.
*/
if (align < 4 && offset_is_const) {
assert(util_is_power_of_two_nonzero(align_mul) && align_mul >= 4);
const unsigned pad = align_offset % 4;
const unsigned comps32 = MIN2(DIV_ROUND_UP(bytes + pad, 4), 4);
return (nir_mem_access_size_align) {
.bit_size = 32,
.num_components = comps32,
.align = 4,
.shift = nir_mem_access_shift_method_scalar,
};
}
break;
case nir_intrinsic_load_task_payload:
if (bytes < 4 || align < 4) {
return (nir_mem_access_size_align) {
.bit_size = 32,
.num_components = 1,
.align = 4,
.shift = nir_mem_access_shift_method_scalar,
};
}
break;
default:
break;
}
const bool is_load = nir_intrinsic_infos[intrin].has_dest;
const bool is_scratch = intrin == nir_intrinsic_load_scratch ||
intrin == nir_intrinsic_store_scratch;
if (align < 4 || bytes < 4) {
/* Choose a byte, word, or dword */
bytes = MIN2(bytes, 4);
if (bytes == 3)
bytes = is_load ? 4 : 2;
if (is_scratch) {
/* The way scratch address swizzling works in the back-end, it
* happens at a DWORD granularity so we can't have a single load
* or store cross a DWORD boundary.
*/
if ((align_offset % 4) + bytes > MIN2(align_mul, 4))
bytes = MIN2(align_mul, 4) - (align_offset % 4);
/* Must be a power of two */
if (bytes == 3)
bytes = 2;
}
return (nir_mem_access_size_align) {
.bit_size = bytes * 8,
.num_components = 1,
.align = 1,
.shift = nir_mem_access_shift_method_scalar,
};
} else {
bytes = MIN2(bytes, 16);
/* With UGM LSC dataport, we don't need to lower 64bit data access into
* two 32bit single vector access since it supports direct 64bit data
* operation.
*/
if (devinfo->has_lsc && align == 8 && bit_size == 64) {
return (nir_mem_access_size_align) {
.bit_size = bit_size,
.num_components = bytes / 8,
.align = bit_size / 8,
.shift = nir_mem_access_shift_method_scalar,
};
} else {
return (nir_mem_access_size_align) {
.bit_size = 32,
.num_components = is_scratch ? 1 :
is_load ? DIV_ROUND_UP(bytes, 4) : bytes / 4,
.align = 4,
.shift = nir_mem_access_shift_method_scalar,
};
}
}
}
static bool
brw_nir_ssbo_intel_instr(nir_builder *b,
nir_intrinsic_instr *intrin,
void *cb_data)
{
switch (intrin->intrinsic) {
case nir_intrinsic_load_ssbo: {
b->cursor = nir_before_instr(&intrin->instr);
nir_def *value = nir_load_ssbo_intel(
b,
intrin->def.num_components,
intrin->def.bit_size,
intrin->src[0].ssa,
intrin->src[1].ssa,
.access = nir_intrinsic_access(intrin),
.align_mul = nir_intrinsic_align_mul(intrin),
.align_offset = nir_intrinsic_align_offset(intrin),
.base = 0);
value->loop_invariant = intrin->def.loop_invariant;
value->divergent = intrin->def.divergent;
nir_def_replace(&intrin->def, value);
return true;
}
case nir_intrinsic_store_ssbo: {
b->cursor = nir_instr_remove(&intrin->instr);
nir_store_ssbo_intel(
b,
intrin->src[0].ssa,
intrin->src[1].ssa,
intrin->src[2].ssa,
.access = nir_intrinsic_access(intrin),
.align_mul = nir_intrinsic_align_mul(intrin),
.align_offset = nir_intrinsic_align_offset(intrin),
.base = 0);
return true;
}
default:
return false;
}
}
static bool
brw_nir_ssbo_intel(nir_shader *shader)
{
return nir_shader_intrinsics_pass(shader,
brw_nir_ssbo_intel_instr,
nir_metadata_control_flow,
NULL);
}
static void
brw_vectorize_lower_mem_access(nir_shader *nir,
const struct brw_compiler *compiler,
enum brw_robustness_flags robust_flags)
{
bool progress = false;
nir_load_store_vectorize_options options = {
.modes = nir_var_mem_ubo | nir_var_mem_ssbo |
nir_var_mem_global | nir_var_mem_shared |
nir_var_mem_task_payload,
.callback = brw_nir_should_vectorize_mem,
.robust_modes = (nir_variable_mode)0,
};
if (robust_flags & BRW_ROBUSTNESS_UBO)
options.robust_modes |= nir_var_mem_ubo;
if (robust_flags & BRW_ROBUSTNESS_SSBO)
options.robust_modes |= nir_var_mem_ssbo;
OPT(nir_opt_load_store_vectorize, &options);
/* When HW supports block loads, using the divergence analysis, try
* to find uniform SSBO loads and turn them into block loads.
*
* Rerun the vectorizer after that to make the largest possible block
* loads.
*
* This is a win on 2 fronts :
* - fewer send messages
* - reduced register pressure
*/
if (OPT(intel_nir_blockify_uniform_loads, compiler->devinfo)) {
OPT(nir_opt_load_store_vectorize, &options);
OPT(nir_opt_constant_folding);
OPT(nir_copy_prop);
if (OPT(brw_nir_rebase_const_offset_ubo_loads)) {
OPT(nir_opt_cse);
OPT(nir_copy_prop);
nir_load_store_vectorize_options ubo_options = {
.modes = nir_var_mem_ubo,
.callback = brw_nir_should_vectorize_mem,
.robust_modes = options.robust_modes & nir_var_mem_ubo,
};
OPT(nir_opt_load_store_vectorize, &ubo_options);
}
}
struct brw_mem_access_cb_data cb_data = {
.devinfo = compiler->devinfo,
};
nir_lower_mem_access_bit_sizes_options mem_access_options = {
.modes = nir_var_mem_ssbo |
nir_var_mem_constant |
nir_var_mem_task_payload |
nir_var_shader_temp |
nir_var_function_temp |
nir_var_mem_global |
nir_var_mem_shared,
.callback = get_mem_access_size_align,
.cb_data = &cb_data,
};
OPT(nir_lower_mem_access_bit_sizes, &mem_access_options);
while (progress) {
progress = false;
OPT(nir_lower_pack);
OPT(nir_copy_prop);
OPT(nir_opt_dce);
OPT(nir_opt_cse);
OPT(nir_opt_algebraic);
OPT(nir_opt_constant_folding);
}
/* Do this after the vectorization & brw_nir_rebase_const_offset_ubo_loads
* so that we maximize the offset put into the messages.
*/
if (compiler->devinfo->ver >= 20) {
OPT(brw_nir_ssbo_intel);
const nir_opt_offsets_options offset_options = {
.buffer_max = UINT32_MAX,
.shared_max = UINT32_MAX,
.shared_atomic_max = UINT32_MAX,
};
OPT(nir_opt_offsets, &offset_options);
OPT(brw_nir_lower_immediate_offsets);
}
}
static bool
nir_shader_has_local_variables(const nir_shader *nir)
{
nir_foreach_function_impl(impl, nir) {
if (!exec_list_is_empty(&impl->locals))
return true;
}
return false;
}
static bool
lower_txd_cb(const nir_tex_instr *tex, const void *data)
{
const struct intel_device_info *devinfo = data;
int min_lod_index = nir_tex_instr_src_index(tex, nir_tex_src_min_lod);
if (tex->is_shadow && min_lod_index >= 0)
return true;
int offset_index = nir_tex_instr_src_index(tex, nir_tex_src_offset);
if (tex->is_shadow && offset_index >= 0 && min_lod_index >= 0)
return true;
/* Cases that require a sampler header and the payload is already too large
* for the HW to handle.
*/
const int sampler_offset_idx =
nir_tex_instr_src_index(tex, nir_tex_src_sampler_offset);
if (min_lod_index >= 0 && sampler_offset_idx >= 0) {
if (!nir_src_is_const(tex->src[sampler_offset_idx].src) ||
(nir_src_is_const(tex->src[sampler_offset_idx].src) &&
(tex->sampler_index +
nir_src_as_uint(tex->src[sampler_offset_idx].src)) >= 16))
return true;
}
const int sampler_handle_idx =
nir_tex_instr_src_index(tex, nir_tex_src_sampler_handle);
if (sampler_handle_idx >= 0 && min_lod_index >= 0)
return true;
if (tex->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
return true;
if (devinfo->verx10 >= 125) {
/* For below, See bspec 45942, "Enable new message layout for cube
* array"
*/
if (tex->sampler_dim == GLSL_SAMPLER_DIM_3D)
return true;
if (tex->is_array)
return true;
}
if (tex->is_shadow && offset_index >= 0 &&
!brw_nir_tex_offset_in_constant_range(tex, offset_index))
return true;
return false;
}
static bool
flag_fused_eu_disable_instr(nir_builder *b, nir_instr *instr, void *data)
{
switch (instr->type) {
case nir_instr_type_tex: {
nir_tex_instr *tex = nir_instr_as_tex(instr);
for (unsigned i = 0; i < tex->num_srcs; ++i) {
nir_tex_src_type src_type = tex->src[i].src_type;
/* backend2 is the packed dynamically programmable offset, goes into
* the sampler message header, so it needs to be considered for EU
* fusion.
*/
if (src_type != nir_tex_src_texture_handle &&
src_type != nir_tex_src_sampler_handle &&
src_type != nir_tex_src_texture_offset &&
src_type != nir_tex_src_sampler_offset &&
src_type != nir_tex_src_backend2)
continue;
if (nir_src_is_divergent(&tex->src[i].src)) {
tex->backend_flags |= BRW_TEX_INSTR_FUSED_EU_DISABLE;
return true;
}
}
return false;
}
case nir_instr_type_intrinsic: {
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
/* We only need to care of intrinsics that refers to a structure/descriptor
* outside of the EU's registers like RENDER_SURFACE_STATE/SAMPLER_STATE,
* because the fusing will pick one thread's descriptor handle and use that
* for the 2 fused threads.
*
* Global pointers don't have that problem since all the access' data is
* per lane in the payload of the SEND message (the 64bit pointer).
*
* URB/shared-memory don't have that problem either because there is no
* descriptor information outside the EU, it's just a per lane
* handle/offset.
*/
switch (intrin->intrinsic) {
case nir_intrinsic_load_ssbo_uniform_block_intel:
case nir_intrinsic_load_ubo_uniform_block_intel:
case nir_intrinsic_load_ssbo_block_intel:
case nir_intrinsic_load_ssbo_intel:
case nir_intrinsic_store_ssbo_intel:
case nir_intrinsic_load_ssbo:
case nir_intrinsic_store_ssbo:
case nir_intrinsic_get_ssbo_size:
case nir_intrinsic_load_ubo:
case nir_intrinsic_image_load:
case nir_intrinsic_image_store:
case nir_intrinsic_image_size:
case nir_intrinsic_image_levels:
case nir_intrinsic_image_atomic:
case nir_intrinsic_image_atomic_swap:
case nir_intrinsic_bindless_image_load:
case nir_intrinsic_bindless_image_store:
case nir_intrinsic_bindless_image_size:
case nir_intrinsic_bindless_image_levels:
case nir_intrinsic_bindless_image_atomic:
case nir_intrinsic_bindless_image_atomic_swap: {
int src_idx = nir_get_io_index_src_number(intrin);
assert(src_idx >= 0);
if (nir_src_is_divergent(&intrin->src[src_idx])) {
nir_intrinsic_set_access(intrin,
nir_intrinsic_access(intrin) |
ACCESS_FUSED_EU_DISABLE_INTEL);
return true;
}
return false;
}
default:
return false;
}
}
default:
return false;
}
}
static void
brw_nir_lower_int64(nir_shader *nir, const struct intel_device_info *devinfo)
{
UNUSED bool progress; /* Written by OPT */
/* Potentially perform this optimization pass twice because it can create
* additional opportunities for itself.
*/
if (OPT(nir_opt_algebraic_before_lower_int64))
OPT(nir_opt_algebraic_before_lower_int64);
if (OPT(nir_lower_int64))
brw_nir_optimize(nir, devinfo);
}
/* Prepare the given shader for codegen
*
* This function is intended to be called right before going into the actual
* backend and is highly backend-specific.
*/
void
brw_postprocess_nir_opts(nir_shader *nir, const struct brw_compiler *compiler,
enum brw_robustness_flags robust_flags)
{
const struct intel_device_info *devinfo = compiler->devinfo;
UNUSED bool progress; /* Written by OPT */
const nir_lower_tex_options tex_options = {
.lower_txp = ~0,
.lower_txf_offset = true,
.lower_rect_offset = true,
.lower_txb_shadow_clamp = true,
.lower_tg4_offsets = true,
.lower_txs_lod = true, /* Wa_14012320009 */
.lower_offset_filter =
devinfo->verx10 >= 125 ? lower_xehp_tg4_offset_filter : NULL,
.lower_invalid_implicit_lod = true,
.lower_index_to_offset = true,
.lower_txd_cb = lower_txd_cb,
.lower_txd_data = devinfo,
};
/* In the case where TG4 coords are lowered to offsets and we have a
* lower_xehp_tg4_offset_filter lowering those offsets further, we need to
* rerun the pass because the instructions inserted by the first lowering
* are not visible during that first pass.
*/
if (OPT(nir_lower_tex, &tex_options))
OPT(nir_lower_tex, &tex_options);
/* MCS lowering can introduce u2u16 conversions. We need to lower those to
* make constant offsets detectable by brw_nir_texture_backend_opcode().
*/
if (OPT(brw_nir_lower_mcs_fetch, devinfo))
OPT(nir_opt_constant_folding);
OPT(intel_nir_lower_sparse_intrinsics);
/* Needs to happen before the backend opcode selection */
OPT(brw_nir_pre_lower_texture);
/* Needs to happen before the texture lowering */
OPT(brw_nir_texture_backend_opcode, devinfo);
OPT(brw_nir_lower_texture);
OPT(nir_lower_bit_size, lower_bit_size_callback, (void *)compiler);
OPT(nir_opt_combine_barriers, combine_all_memory_barriers, NULL);
do {
progress = false;
OPT(nir_opt_algebraic_before_ffma);
} while (progress);
if (devinfo->verx10 >= 125) {
/* Lower integer division by constants before nir_lower_idiv. */
OPT(nir_opt_idiv_const, 32);
const nir_lower_idiv_options options = {
.allow_fp16 = false
};
/* Given an 8-bit integer remainder, nir_lower_idiv will produce new
* 8-bit integer math which needs to be lowered.
*/
if (OPT(nir_lower_idiv, &options))
OPT(nir_lower_bit_size, lower_bit_size_callback, (void *)compiler);
}
if (devinfo->ver >= 30)
NIR_PASS(_, nir, brw_nir_lower_sample_index_in_coord);
if (mesa_shader_stage_can_set_fragment_shading_rate(nir->info.stage))
NIR_PASS(_, nir, intel_nir_lower_shading_rate_output);
OPT(brw_nir_tag_speculative_access);
brw_nir_optimize(nir, devinfo);
if (nir_shader_has_local_variables(nir)) {
OPT(nir_lower_vars_to_explicit_types, nir_var_function_temp,
glsl_get_natural_size_align_bytes);
OPT(nir_lower_explicit_io, nir_var_function_temp,
nir_address_format_32bit_offset);
brw_nir_optimize(nir, devinfo);
}
brw_vectorize_lower_mem_access(nir, compiler, robust_flags);
/* Needs to be prior int64 lower because it generates 64bit address
* manipulations
*/
OPT(intel_nir_lower_printf);
brw_nir_lower_int64(nir, devinfo);
/* This pass specifically looks for sequences of fmul and fadd that
* intel_nir_opt_peephole_ffma will try to eliminate. Call this
* reassociation pass first.
*/
OPT(nir_opt_reassociate_matrix_mul);
/* Try and fuse multiply-adds, if successful, run shrink_vectors to
* avoid peephole_ffma to generate things like this :
* vec16 ssa_0 = ...
* vec16 ssa_1 = fneg ssa_0
* vec1 ssa_2 = ffma ssa_1, ...
*
* We want this instead :
* vec16 ssa_0 = ...
* vec1 ssa_1 = fneg ssa_0.x
* vec1 ssa_2 = ffma ssa_1, ...
*/
if (OPT(intel_nir_opt_peephole_ffma))
OPT(nir_opt_shrink_vectors, false);
OPT(intel_nir_opt_peephole_imul32x16);
if (OPT(nir_opt_comparison_pre)) {
OPT(nir_copy_prop);
OPT(nir_opt_dce);
OPT(nir_opt_cse);
/* Do the select peepehole again. nir_opt_comparison_pre (combined with
* the other optimization passes) will have removed at least one
* instruction from one of the branches of the if-statement, so now it
* might be under the threshold of conversion to bcsel.
*/
nir_opt_peephole_select_options peephole_select_options = {
.limit = 0,
};
OPT(nir_opt_peephole_select, &peephole_select_options);
peephole_select_options.limit = 1;
peephole_select_options.expensive_alu_ok = true;
OPT(nir_opt_peephole_select, &peephole_select_options);
}
do {
progress = false;
OPT(brw_nir_opt_fsat);
OPT(nir_opt_algebraic_late);
OPT(brw_nir_lower_fsign);
if (progress) {
OPT(nir_opt_constant_folding);
OPT(nir_copy_prop);
OPT(nir_opt_dce);
OPT(nir_opt_cse);
}
} while (progress);
OPT(nir_lower_fp16_casts, nir_lower_fp16_split_fp64);
OPT(nir_lower_alu_to_scalar, NULL, NULL);
while (OPT(nir_opt_algebraic_distribute_src_mods)) {
OPT(nir_opt_constant_folding);
OPT(nir_copy_prop);
OPT(nir_opt_dce);
OPT(nir_opt_cse);
}
OPT(nir_copy_prop);
OPT(nir_opt_dce);
nir_move_options move_all = nir_move_const_undef | nir_move_load_ubo |
nir_move_load_input | nir_move_comparisons |
nir_move_copies | nir_move_load_ssbo |
nir_move_alu;
OPT(nir_opt_sink, move_all);
OPT(nir_opt_move, move_all);
OPT(nir_opt_dead_cf);
static const nir_lower_subgroups_options subgroups_options = {
.ballot_bit_size = 32,
.ballot_components = 1,
.lower_elect = true,
.lower_subgroup_masks = true,
};
if (OPT(nir_opt_uniform_atomics, false))
OPT(nir_lower_subgroups, &subgroups_options);
/* nir_opt_uniform_subgroup can create some operations (e.g.,
* load_subgroup_lt_mask) that need to be lowered again.
*/
if (OPT(nir_opt_uniform_subgroup, &subgroups_options)) {
/* nir_opt_uniform_subgroup may have made some things
* that previously appeared divergent be marked as convergent. This
* allows the elimination of some loops over, say, a TXF instruction
* with a non-uniform texture handle.
*/
brw_nir_optimize(nir, devinfo);
OPT(nir_lower_subgroups, &subgroups_options);
}
/* A few passes that run after the initial int64 lowering may produce
* new int64 operations. E.g. uniform subgroup may generate a 64-bit mul
* and peephole_select may generate a 64-bit select. So do another
* round at the tail end.
*/
brw_nir_lower_int64(nir, devinfo);
/* Deal with EU fusion */
if (devinfo->ver == 12) {
nir_divergence_options options =
nir_divergence_across_subgroups |
nir_divergence_multiple_workgroup_per_compute_subgroup;
nir_foreach_function_impl(impl, nir) {
nir_divergence_analysis_impl(impl, options);
impl->valid_metadata |= nir_metadata_divergence;
}
nir_shader_instructions_pass(nir,
flag_fused_eu_disable_instr,
nir_metadata_all, NULL);
/* We request a special divergence information which is not needed
* after.
*/
nir_foreach_function_impl(impl, nir) {
nir_progress(true, impl, ~nir_metadata_divergence);
}
}
}
void
brw_postprocess_nir_out_of_ssa(nir_shader *nir,
unsigned dispatch_width,
debug_archiver *archiver,
bool debug_enabled)
{
UNUSED bool progress; /* Written by OPT */
/* Run fsign lowering again after the last time brw_nir_optimize is called.
* As is the case with conversion lowering (below), brw_nir_optimize can
* create additional fsign instructions.
*/
if (OPT(brw_nir_lower_fsign))
OPT(nir_opt_dce);
/* Run nir_split_conversions only after the last tiem
* brw_nir_optimize is called. Various optimizations invoked there can
* rematerialize the conversions that the lowering pass eliminates.
*/
const nir_split_conversions_options split_conv_opts = {
.callback = intel_nir_split_conversions_cb,
};
OPT(nir_split_conversions, &split_conv_opts);
/* Do this only after the last opt_gcm. GCM will undo this lowering. */
if (nir->info.stage == MESA_SHADER_FRAGMENT) {
OPT(intel_nir_lower_non_uniform_barycentric_at_sample);
}
OPT(nir_lower_bool_to_int32);
OPT(nir_copy_prop);
OPT(nir_opt_dce);
OPT(nir_lower_locals_to_regs, 32);
nir_validate_ssa_dominance(nir, "before nir_convert_from_ssa");
/* Rerun the divergence analysis before convert_from_ssa as this pass has
* some assert on consistent divergence flags.
*/
NIR_PASS(_, nir, nir_convert_to_lcssa, true, true);
nir_divergence_analysis(nir);
if (unlikely(debug_enabled || archiver)) {
/* Re-index SSA defs so we print more sensible numbers. */
nir_foreach_function_impl(impl, nir) {
nir_index_ssa_defs(impl);
}
if (debug_enabled) {
fprintf(stderr, "NIR (SSA form) for %s shader:\n",
_mesa_shader_stage_to_string(nir->info.stage));
nir_print_shader(nir, stderr);
}
if (unlikely(archiver))
brw_debug_archive_nir(archiver, nir, dispatch_width, "ssa");
}
OPT(nir_convert_from_ssa, true, true);
OPT(nir_opt_dce);
if (OPT(nir_opt_rematerialize_compares))
OPT(nir_opt_dce);
/* The mesh stages require this pass to be called at the last minute,
* but if anything is done by it, it will also constant fold, and that
* undoes the work done by nir_trivialize_registers, so call it right
* before that one instead.
*/
if (nir->info.stage == MESA_SHADER_MESH ||
nir->info.stage == MESA_SHADER_TASK)
brw_nir_adjust_payload(nir);
nir_trivialize_registers(nir);
nir_sweep(nir);
if (unlikely(debug_enabled)) {
fprintf(stderr, "NIR (final form) for %s shader:\n",
_mesa_shader_stage_to_string(nir->info.stage));
nir_print_shader(nir, stderr);
}
if (unlikely(archiver))
brw_debug_archive_nir(archiver, nir, dispatch_width, "out");
}
static unsigned
get_subgroup_size(const struct shader_info *info, unsigned max_subgroup_size)
{
if (info->api_subgroup_size) {
/* We have to use the global/required constant size. */
assert(info->api_subgroup_size >= 8 && info->api_subgroup_size <= 32);
return info->api_subgroup_size;
} else if (info->api_subgroup_size_draw_uniform) {
/* It has to be uniform across all invocations but can vary per stage
* if we want. This gives us a bit more freedom.
*
* For compute, brw_nir_apply_key is called per-dispatch-width so this
* is the actual subgroup size and not a maximum. However, we only
* invoke one size of any given compute shader so it's still guaranteed
* to be uniform across invocations.
*/
return max_subgroup_size;
} else {
/* The subgroup size is allowed to be fully varying. For geometry
* stages, we know it's always 8 which is max_subgroup_size so we can
* return that. For compute, brw_nir_apply_key is called once per
* dispatch-width so max_subgroup_size is the real subgroup size.
*
* For fragment, we return 0 and let it fall through to the back-end
* compiler. This means we can't optimize based on subgroup size but
* that's a risk the client took when it asked for a varying subgroup
* size.
*/
return info->stage == MESA_SHADER_FRAGMENT ? 0 : max_subgroup_size;
}
}
unsigned
brw_nir_api_subgroup_size(const nir_shader *nir,
unsigned hw_subgroup_size)
{
return get_subgroup_size(&nir->info, hw_subgroup_size);
}
void
brw_nir_apply_key(nir_shader *nir,
const struct brw_compiler *compiler,
const struct brw_base_prog_key *key,
unsigned max_subgroup_size)
{
bool progress = false;
const nir_lower_subgroups_options subgroups_options = {
.subgroup_size = get_subgroup_size(&nir->info, max_subgroup_size),
.ballot_bit_size = 32,
.ballot_components = 1,
.lower_subgroup_masks = true,
};
OPT(nir_lower_subgroups, &subgroups_options);
if (key->limit_trig_input_range)
OPT(brw_nir_limit_trig_input_range_workaround);
if (progress) {
brw_nir_optimize(nir, compiler->devinfo);
}
}
enum brw_conditional_mod
brw_cmod_for_nir_comparison(nir_op op)
{
switch (op) {
case nir_op_flt:
case nir_op_flt32:
case nir_op_ilt:
case nir_op_ilt32:
case nir_op_ult:
case nir_op_ult32:
return BRW_CONDITIONAL_L;
case nir_op_fge:
case nir_op_fge32:
case nir_op_ige:
case nir_op_ige32:
case nir_op_uge:
case nir_op_uge32:
return BRW_CONDITIONAL_GE;
case nir_op_feq:
case nir_op_feq32:
case nir_op_ieq:
case nir_op_ieq32:
case nir_op_b32all_fequal2:
case nir_op_b32all_iequal2:
case nir_op_b32all_fequal3:
case nir_op_b32all_iequal3:
case nir_op_b32all_fequal4:
case nir_op_b32all_iequal4:
return BRW_CONDITIONAL_Z;
case nir_op_fneu:
case nir_op_fneu32:
case nir_op_ine:
case nir_op_ine32:
case nir_op_b32any_fnequal2:
case nir_op_b32any_inequal2:
case nir_op_b32any_fnequal3:
case nir_op_b32any_inequal3:
case nir_op_b32any_fnequal4:
case nir_op_b32any_inequal4:
return BRW_CONDITIONAL_NZ;
default:
UNREACHABLE("Unsupported NIR comparison op");
}
}
enum lsc_opcode
lsc_op_for_nir_intrinsic(const nir_intrinsic_instr *intrin)
{
switch (intrin->intrinsic) {
case nir_intrinsic_load_ssbo:
case nir_intrinsic_load_ssbo_intel:
case nir_intrinsic_load_shared:
case nir_intrinsic_load_global:
case nir_intrinsic_load_global_block_intel:
case nir_intrinsic_load_global_constant:
case nir_intrinsic_load_global_constant_uniform_block_intel:
case nir_intrinsic_load_shared_block_intel:
case nir_intrinsic_load_shared_uniform_block_intel:
case nir_intrinsic_load_ssbo_block_intel:
case nir_intrinsic_load_ssbo_uniform_block_intel:
case nir_intrinsic_load_ubo_uniform_block_intel:
case nir_intrinsic_load_scratch:
return LSC_OP_LOAD;
case nir_intrinsic_store_ssbo:
case nir_intrinsic_store_ssbo_intel:
case nir_intrinsic_store_shared:
case nir_intrinsic_store_global:
case nir_intrinsic_store_global_block_intel:
case nir_intrinsic_store_shared_block_intel:
case nir_intrinsic_store_ssbo_block_intel:
case nir_intrinsic_store_scratch:
return LSC_OP_STORE;
case nir_intrinsic_image_load:
case nir_intrinsic_bindless_image_load:
return nir_intrinsic_image_dim(intrin) == GLSL_SAMPLER_DIM_MS ?
LSC_OP_LOAD_CMASK_MSRT :
LSC_OP_LOAD_CMASK;
case nir_intrinsic_image_store:
case nir_intrinsic_bindless_image_store:
return nir_intrinsic_image_dim(intrin) == GLSL_SAMPLER_DIM_MS ?
LSC_OP_STORE_CMASK_MSRT :
LSC_OP_STORE_CMASK;
default:
assert(nir_intrinsic_has_atomic_op(intrin));
break;
}
switch (nir_intrinsic_atomic_op(intrin)) {
case nir_atomic_op_iadd: {
unsigned src_idx;
switch (intrin->intrinsic) {
case nir_intrinsic_image_atomic:
case nir_intrinsic_bindless_image_atomic:
src_idx = 3;
break;
case nir_intrinsic_ssbo_atomic:
src_idx = 2;
break;
case nir_intrinsic_shared_atomic:
case nir_intrinsic_global_atomic:
src_idx = 1;
break;
default:
UNREACHABLE("Invalid add atomic opcode");
}
if (nir_src_is_const(intrin->src[src_idx])) {
int64_t add_val = nir_src_as_int(intrin->src[src_idx]);
if (add_val == 1)
return LSC_OP_ATOMIC_INC;
else if (add_val == -1)
return LSC_OP_ATOMIC_DEC;
}
return LSC_OP_ATOMIC_ADD;
}
case nir_atomic_op_imin: return LSC_OP_ATOMIC_MIN;
case nir_atomic_op_umin: return LSC_OP_ATOMIC_UMIN;
case nir_atomic_op_imax: return LSC_OP_ATOMIC_MAX;
case nir_atomic_op_umax: return LSC_OP_ATOMIC_UMAX;
case nir_atomic_op_iand: return LSC_OP_ATOMIC_AND;
case nir_atomic_op_ior: return LSC_OP_ATOMIC_OR;
case nir_atomic_op_ixor: return LSC_OP_ATOMIC_XOR;
case nir_atomic_op_xchg: return LSC_OP_ATOMIC_STORE;
case nir_atomic_op_cmpxchg: return LSC_OP_ATOMIC_CMPXCHG;
case nir_atomic_op_fmin: return LSC_OP_ATOMIC_FMIN;
case nir_atomic_op_fmax: return LSC_OP_ATOMIC_FMAX;
case nir_atomic_op_fcmpxchg: return LSC_OP_ATOMIC_FCMPXCHG;
case nir_atomic_op_fadd: return LSC_OP_ATOMIC_FADD;
default:
UNREACHABLE("Unsupported NIR atomic intrinsic");
}
}
enum brw_reg_type
brw_type_for_base_type(enum glsl_base_type base_type)
{
switch (base_type) {
case GLSL_TYPE_UINT: return BRW_TYPE_UD;
case GLSL_TYPE_INT: return BRW_TYPE_D;
case GLSL_TYPE_FLOAT: return BRW_TYPE_F;
case GLSL_TYPE_FLOAT16: return BRW_TYPE_HF;
case GLSL_TYPE_BFLOAT16: return BRW_TYPE_BF;
case GLSL_TYPE_DOUBLE: return BRW_TYPE_DF;
case GLSL_TYPE_UINT16: return BRW_TYPE_UW;
case GLSL_TYPE_INT16: return BRW_TYPE_W;
case GLSL_TYPE_UINT8: return BRW_TYPE_UB;
case GLSL_TYPE_INT8: return BRW_TYPE_B;
case GLSL_TYPE_UINT64: return BRW_TYPE_UQ;
case GLSL_TYPE_INT64: return BRW_TYPE_Q;
default:
UNREACHABLE("invalid base type");
}
}
enum brw_reg_type
brw_type_for_nir_type(const struct intel_device_info *devinfo,
nir_alu_type type)
{
switch (type) {
case nir_type_uint:
case nir_type_uint32:
return BRW_TYPE_UD;
case nir_type_bool:
case nir_type_int:
case nir_type_bool32:
case nir_type_int32:
return BRW_TYPE_D;
case nir_type_float:
case nir_type_float32:
return BRW_TYPE_F;
case nir_type_float16:
return BRW_TYPE_HF;
case nir_type_float64:
return BRW_TYPE_DF;
case nir_type_int64:
return BRW_TYPE_Q;
case nir_type_uint64:
return BRW_TYPE_UQ;
case nir_type_int16:
return BRW_TYPE_W;
case nir_type_uint16:
return BRW_TYPE_UW;
case nir_type_int8:
return BRW_TYPE_B;
case nir_type_uint8:
return BRW_TYPE_UB;
default:
UNREACHABLE("unknown type");
}
return BRW_TYPE_F;
}
nir_shader *
brw_nir_create_passthrough_tcs(void *mem_ctx, const struct brw_compiler *compiler,
const struct brw_tcs_prog_key *key)
{
assert(key->input_vertices > 0);
const nir_shader_compiler_options *options =
&compiler->nir_options[MESA_SHADER_TESS_CTRL];
uint64_t inputs_read = key->outputs_written &
~(VARYING_BIT_TESS_LEVEL_INNER | VARYING_BIT_TESS_LEVEL_OUTER);
unsigned locations[64];
unsigned num_locations = 0;
u_foreach_bit64(varying, inputs_read)
locations[num_locations++] = varying;
nir_shader *nir =
nir_create_passthrough_tcs_impl(options, locations, num_locations,
key->input_vertices);
ralloc_steal(mem_ctx, nir);
nir->info.inputs_read = inputs_read;
nir->info.tess._primitive_mode = key->_tes_primitive_mode;
nir_validate_shader(nir, "in brw_nir_create_passthrough_tcs");
struct brw_nir_compiler_opts opts = {};
brw_preprocess_nir(compiler, nir, &opts);
return nir;
}
nir_def *
brw_nir_load_global_const(nir_builder *b, nir_intrinsic_instr *load,
nir_def *base_addr, unsigned off)
{
assert(load->intrinsic == nir_intrinsic_load_push_constant ||
load->intrinsic == nir_intrinsic_load_uniform);
unsigned bit_size = load->def.bit_size;
assert(bit_size >= 8 && bit_size % 8 == 0);
nir_def *sysval;
if (nir_src_is_const(load->src[0])) {
uint64_t offset = off +
nir_intrinsic_base(load) +
nir_src_as_uint(load->src[0]);
/* Things should be component-aligned. */
assert(offset % (bit_size / 8) == 0);
unsigned suboffset = offset % 64;
uint64_t aligned_offset = offset - suboffset;
/* Load two just in case we go over a 64B boundary */
nir_def *data[2];
for (unsigned i = 0; i < 2; i++) {
nir_def *addr = nir_iadd_imm(b, base_addr, aligned_offset + i * 64);
data[i] = nir_load_global_constant_uniform_block_intel(
b, 16, 32, addr,
.access = ACCESS_CAN_REORDER | ACCESS_NON_WRITEABLE,
.align_mul = 64);
}
sysval = nir_extract_bits(b, data, 2, suboffset * 8,
load->num_components, bit_size);
} else {
nir_def *offset32 =
nir_iadd_imm(b, load->src[0].ssa,
off + nir_intrinsic_base(load));
nir_def *addr = nir_iadd(b, base_addr, nir_u2u64(b, offset32));
sysval = nir_load_global_constant(b, load->num_components, bit_size, addr);
}
return sysval;
}
const struct glsl_type *
brw_nir_get_var_type(const struct nir_shader *nir, nir_variable *var)
{
const struct glsl_type *type = var->interface_type;
if (!type) {
type = var->type;
if (nir_is_arrayed_io(var, nir->info.stage)) {
assert(glsl_type_is_array(type));
type = glsl_get_array_element(type);
}
}
return type;
}
bool
brw_nir_uses_inline_data(nir_shader *shader)
{
nir_foreach_function_impl(impl, shader) {
nir_foreach_block(block, impl) {
nir_foreach_instr(instr, block) {
if (instr->type != nir_instr_type_intrinsic)
continue;
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
if (intrin->intrinsic != nir_intrinsic_load_inline_data_intel)
continue;
return true;
}
}
}
return false;
}
/**
* Move load_interpolated_input with simple (payload-based) barycentric modes
* to the top of the program so we don't emit multiple PLNs for the same input.
*
* This works around CSE not being able to handle non-dominating cases
* such as:
*
* if (...) {
* interpolate input
* } else {
* interpolate the same exact input
* }
*
* This should be replaced by global value numbering someday.
*/
bool
brw_nir_move_interpolation_to_top(nir_shader *nir)
{
bool progress = false;
nir_foreach_function_impl(impl, nir) {
nir_block *top = fragment_top_block_or_after_wa_18019110168(impl);
nir_cursor cursor = nir_before_instr(nir_block_first_instr(top));
bool impl_progress = false;
for (nir_block *block = nir_block_cf_tree_next(top);
block != NULL;
block = nir_block_cf_tree_next(block)) {
nir_foreach_instr_safe(instr, block) {
if (instr->type != nir_instr_type_intrinsic)
continue;
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
if (intrin->intrinsic != nir_intrinsic_load_interpolated_input)
continue;
nir_intrinsic_instr *bary_intrinsic =
nir_def_as_intrinsic(intrin->src[0].ssa);
nir_intrinsic_op op = bary_intrinsic->intrinsic;
/* Leave interpolateAtSample/Offset() where they are. */
if (op == nir_intrinsic_load_barycentric_at_sample ||
op == nir_intrinsic_load_barycentric_at_offset)
continue;
nir_instr *move[3] = {
&bary_intrinsic->instr,
intrin->src[1].ssa->parent_instr,
instr
};
for (unsigned i = 0; i < ARRAY_SIZE(move); i++)
nir_instr_move(cursor, move[i]);
impl_progress = true;
}
}
progress = progress || impl_progress;
nir_progress(impl_progress, impl, nir_metadata_control_flow);
}
return progress;
}
static bool
filter_simd(const nir_instr *instr, UNUSED const void *options)
{
if (instr->type != nir_instr_type_intrinsic)
return false;
switch (nir_instr_as_intrinsic(instr)->intrinsic) {
case nir_intrinsic_load_simd_width_intel:
case nir_intrinsic_load_subgroup_id:
return true;
default:
return false;
}
}
static nir_def *
lower_simd(nir_builder *b, nir_instr *instr, void *options)
{
uintptr_t simd_width = (uintptr_t)options;
switch (nir_instr_as_intrinsic(instr)->intrinsic) {
case nir_intrinsic_load_simd_width_intel:
return nir_imm_int(b, simd_width);
case nir_intrinsic_load_subgroup_id:
/* If the whole workgroup fits in one thread, we can lower subgroup_id
* to a constant zero.
*/
if (!b->shader->info.workgroup_size_variable) {
unsigned local_workgroup_size = b->shader->info.workgroup_size[0] *
b->shader->info.workgroup_size[1] *
b->shader->info.workgroup_size[2];
if (local_workgroup_size <= simd_width)
return nir_imm_int(b, 0);
}
return NULL;
default:
return NULL;
}
}
bool
brw_nir_lower_simd(nir_shader *nir, unsigned dispatch_width)
{
return nir_shader_lower_instructions(nir, filter_simd, lower_simd,
(void *)(uintptr_t)dispatch_width);
}
nir_variable *
brw_nir_find_complete_variable_with_location(nir_shader *shader,
nir_variable_mode mode,
int location)
{
nir_variable *best_var = NULL;
unsigned last_size = 0;
nir_foreach_variable_with_modes(var, shader, mode) {
if (var->data.location != location)
continue;
unsigned new_size = glsl_count_dword_slots(var->type, false);
if (new_size > last_size) {
best_var = var;
last_size = new_size;
}
}
return best_var;
}
struct brw_quick_pressure_state {
uint8_t *convergent_size;
uint8_t *divergent_size;
struct u_sparse_bitset live;
unsigned curr_convergent_size;
unsigned curr_divergent_size;
};
static inline bool
record_def_size(nir_def *def, void *v_state)
{
struct brw_quick_pressure_state *state = v_state;
unsigned num_components = def->num_components;
/* Texturing has return length reduction */
if (def->parent_instr->type == nir_instr_type_tex)
num_components = util_last_bit(nir_def_components_read(def));
/* Assume tightly packed */
unsigned size = DIV_ROUND_UP(num_components * def->bit_size, 32);
nir_op alu_op =
def->parent_instr->type == nir_instr_type_alu ?
nir_def_as_alu(def)->op : nir_num_opcodes;
/* Assume these are handled via source modifiers */
if (alu_op == nir_op_fneg || alu_op == nir_op_ineg ||
alu_op == nir_op_fabs || alu_op == nir_op_iabs)
size = 0;
if (nir_def_is_unused(def))
size = 0;
if (def->divergent) {
state->convergent_size[def->index] = 0;
state->divergent_size[def->index] = size;
} else {
state->convergent_size[def->index] = size;
state->divergent_size[def->index] = 0;
}
return true;
}
static bool
set_src_live(nir_src *src, void *v_state)
{
struct brw_quick_pressure_state *state = v_state;
/* undefined variables are never live */
if (nir_src_is_undef(*src))
return true;
if (!u_sparse_bitset_test(&state->live, src->ssa->index)) {
u_sparse_bitset_set(&state->live, src->ssa->index);
/* This value just became live, add its size */
state->curr_convergent_size += state->convergent_size[src->ssa->index];
state->curr_divergent_size += state->divergent_size[src->ssa->index];
}
return true;
}
static bool
set_def_dead(nir_def *def, void *v_state)
{
struct brw_quick_pressure_state *state = v_state;
if (u_sparse_bitset_test(&state->live, def->index)) {
u_sparse_bitset_clear(&state->live, def->index);
/* This value just became dead, subtract its size */
state->curr_convergent_size -= state->convergent_size[def->index];
state->curr_divergent_size -= state->divergent_size[def->index];
}
return true;
}
static void
quick_pressure_estimate(nir_shader *nir,
unsigned *out_convergent_size,
unsigned *out_divergent_size)
{
nir_function_impl *impl = nir_shader_get_entrypoint(nir);
nir_metadata_require(impl, nir_metadata_divergence |
nir_metadata_live_defs);
struct brw_quick_pressure_state state = {
.convergent_size = calloc(impl->ssa_alloc, sizeof(uint8_t)),
.divergent_size = calloc(impl->ssa_alloc, sizeof(uint8_t)),
};
u_sparse_bitset_init(&state.live, impl->ssa_alloc, NULL);
unsigned max_convergent_size = 0, max_divergent_size = 0;
nir_foreach_block(block, impl) {
nir_foreach_instr(instr, block) {
nir_foreach_def(instr, record_def_size, &state);
}
state.curr_convergent_size = 0;
state.curr_divergent_size = 0;
/* Start with sizes for anything live-out from the block */
U_SPARSE_BITSET_FOREACH_SET(&block->live_out, i) {
state.curr_convergent_size += state.convergent_size[i];
state.curr_divergent_size += state.divergent_size[i];
}
/* Walk backwards, add source sizes on first sight, subtract on def */
u_sparse_bitset_dup(&state.live, &block->live_out);
nir_foreach_instr_reverse(instr, block) {
if (instr->type == nir_instr_type_phi)
break;
nir_foreach_def(instr, set_def_dead, &state);
nir_foreach_src(instr, set_src_live, &state);
max_convergent_size =
MAX2(max_convergent_size, state.curr_convergent_size);
max_divergent_size =
MAX2(max_divergent_size, state.curr_divergent_size);
}
}
*out_convergent_size = max_convergent_size;
*out_divergent_size = max_divergent_size;
free(state.convergent_size);
free(state.divergent_size);
u_sparse_bitset_free(&state.live);
}
/**
* This pass performs a quick/rough estimate of register pressure in
* SIMD8/16/32 modes, based on how many convergent and divergent values
* exist in the SSA NIR program. Divergent values scale up with SIMD
* width, while convergent ones do not.
*
* This is fundamentally inaccurate, and can't model everything properly.
* We try to err toward underestimating the register pressure. The hope
* is to use this for things like "is it worth even trying to compile a
* SIMD<X> shader, or will it ultimately fail?" If a lower bound on the
* pressure is too high, we can skip all the CPU overhead from invoking
* the backend compiler to try. If it's close though, we'd rather say
* to go ahead and try it rather than lose out on potential benefits of
* larger SIMD sizes.
*/
void
brw_nir_quick_pressure_estimate(nir_shader *nir,
const struct intel_device_info *devinfo,
unsigned simd_estimate[3])
{
unsigned convergent_size, divergent_size;
quick_pressure_estimate(nir, &convergent_size, &divergent_size);
/* Xe2 starts at SIMD16, rather than SIMD8 */
simd_estimate[0] = 0;
unsigned base_simd = devinfo->ver >= 20 ? 1 : 0;
for (unsigned i = base_simd; i < 3; i++) {
simd_estimate[i] = DIV_ROUND_UP(convergent_size, 8 << base_simd) +
divergent_size * (1 << (i - base_simd));
}
}
|